Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Diesel engine components in the combustion chamber have been exposed to cyclic loadings under environmental effects, including high temperatures and corrosive fluids. Therefore, knowing the corrosion-fatigue behavior of materials is essential for designer engineers. In this article, pure fatigue and corrosion-fatigue behaviors of the piston aluminum alloy have been experimentally investigated. For such an objective, as-cast and pre-corrosive standard samples were tested by the rotary bending fatigue machine, under 4 stress levels. Some specimens were exposed to the corrosive fluid with 0.00235 % of the sulfuric acid for 100 and 200 hours. The results showed higher weight losses for 200 hours immersion times. As another result, it could be concluded that the lifetime decreased in pre-corrosive samples for both 100 and 200 hours of the immersion time, compared to that of as-cast specimens. However, such a lifetime reduction was more significant for 200 hours of the immersion time, especially within the high-cycle fatigue regime (or lower stress levels). Under high stress levels, both pre-corrosive sample types had almost similar behaviors. The field-emission scanning electron microscopy images of specimen fracture surfaces indicated that the brittle region of the fractured surface was larger for specimens after the 200 hours of corrosion-fatigue testing than the other specimen.
Go to article

Bibliography

[1] Li, Z., Li, Ch., Liu, Y., Yu, L., Guo, Q. & Li, H. (2016). Effect of heat treatment on microstructure and mechanical property of Ale10%Mg2Si alloy. Journal of Alloys and Compounds. 663, 16-19. DOI: http://dx.doi.org/10.1016/ j.jallcom.2015.12.128.
[2] Wang, M., Pang, J.C., Li, S.X. & Zhang, Z.F. (2017). Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Materials Science and Engineering A. 704, 480-492. DOI: http://dx.doi.org/ 10.1016/j.msea.2017.08.014.
[3] Azadi, M. (2017). Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect. International Journal of Fatigue. 99, 303-314. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2016.12.001.
[4] Guerin, M., Alexis, J., Andrieu, E., Blanc, C. & Odemer, G. (2015). Corrosion-fatigue lifetime of Aluminum-Copper-Lithium alloy 2050 in chloride solution. Materials and Design 87, 681-69. DOI: http://dx.doi.org/10.1016/j.matdes. 2015.08.003.
[5] Chen, Y., Zhou, J., Liu, Ch. & Wang, F. (2017). Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy. International Journal of Fatigue. 108, 35-46. DOI: https://doi.org/10.1016/ j.ijfatigue.2017.11.008.
[6] Chen, Y., Liu, Ch., Zhou, J. & Wang, X. (2017). Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions. International Journal of Fatigue. 98, 269-278. DOI: http://dx.doi.org/10.1016/j.ijfatigue. 2017.02.004.
[7] Chen, Y., Liu, Ch., Zhou, J. & Wang, F. (2019). Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy. Journal of Alloys and Compounds. 772, 1-14. DOI: https://doi.org/10.1016/ j.jallcom.2018.08.282.
[8] Rodriguez, R.I., Jordon, J.B., Allison, P.G., Rushing, T. & Garcia, L. (2019). Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys. Material Science and Engineering. 742, 255-268. DOI: https://doi.org/10.1016/j.msea.2018.11.020.
[9] Mishra, R.K. (2020). Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Materials Today: Proceedings. 25(4), 602-609. DOI: https://doi.org/10.1016/j.matpr.2019.07.375.
[10] Azadi, M., Bahmanabadi, H., Gruen, F. & Winter, G. (2020). Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering A. 788, 139497. DOI: https://doi.org/10.1016/j.msea.2020.139497.
[11] Metallic materials-rotating bar bending fatigue testing. (2010). Standard No. ISO-1143, ISO International Standard.
[12] Aroo, H., Parast, M.S.A., Azadi, M. & Azadi, M. (2020). Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis. 11th International Conference on Internal Combustion Engines and Oil, Tehran, Iran (in Persian).
[13] Azadi, M., Zolfaghari, M., Rezanezhad, S. & Azadi, M. (2018). Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Applied Physics A. 124(5), 377. DOI: https://doi.org/10.1007/s12540-019-00498-7
[14] Azadi, M. & Aroo, H. (2020). Temperature effect on creep and fracture behaviors of nano-SiO2-composite and alsi12cu3ni2mgfe aluminum alloy. International Journal of Engineering. 33(8), 1579-1589. DOI: 10.5829/ije. 2020.33.08b.16.
[15] Azadi, M. & Aroo, H. (2019). Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Material Research Express. 6, 115020. DOI: https://doi.org/10.1088/2053-1591/ab455f.
[16] Zainon, F., Rafezi Ahmad, K. & Daud, R. (2015). Effect of heat treatment on microstructure, hardness and wear of aluminum alloy 332. Applied Mechanics and Materials. 786, 18-22. DOI: 10.4028/www.scientific.net/AMM.786.18.
[17] Han, L., Sui, Y., Wang, Q., Wang, K. & Jiang, Y. (2017). Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. Journal of Alloys and Compounds. 695, 1566-1572. DOI: https://doi.org/10.1016/ S1003-6326(20)65333-X.
[18] Humbertjean, A. & Beck, T. (2013). Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading. International Journal of Fatigue. 53, 67-74. DOI: 10.1016/j.ijfatigue. 2011.09.017.
[19] Mollaei, M. Azadi, M. Tavakoli, H. (2018). A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing. Applied Physics A, 124, 504. https://doi.org/10.1007/s00339-018-1929-2
[20] Arab, M., Azadi, M. & Mirzaee, O. (2020). Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites, Materials Chemistry and Physics, 253, 123259. DOI: https://doi.org/10.1016/j.matchemphys.2020.123259.
Go to article

Authors and Affiliations

M. Azadi
1
ORCID: ORCID
H. Aroo
1
M.. Azadi
1
M.S.A. Parast
1

  1. Semnan University, Iran
Download PDF Download RIS Download Bibtex

Abstract

Aluminum alloys, due to appropriate strength to weight ratio, are widely used in various industries, including automotive engines. This type of structures, due to high-temperature operations, are affected by the creep phenomenon; thus, the limited lifetime is expected for them. Therefore, in designing these types of parts, it is necessary to have sufficient information about the creep behavior and the material strength. One way to improve the properties is to add nanoparticles and fabricate a metal-based nano-composite. In the present research, failure mechanisms and creep properties of piston aluminum alloys were experimentally studied. In experiments, working conditions of combustion engine pistons were simulated. The material was composed of the aluminum matrix, which was reinforced by silicon oxide nanoparticles. The stir-casting method was used to produce the nano-composite by aluminum alloys and 1 wt.% of nanoparticles. The extraordinary model included the relationships between the stress and the temperature on the strain rate and the creep lifetime, as well as various theories such as the regression model. For this purpose, the creep test was performed on the standard sample at different stress levels and a specific temperature of 275 ℃. By plotting strain-time and strain rate-time curves, it was found that the creep lifetime decreased by increasing stress levels from 75 MPa to 125 MPa. Moreover, by comparing the creep test results of nanoparticle-reinforced alloys and nanoparticle-free alloys, 40% fall was observed in the reinforced material lifetime under 75 MPa. An increase in the strain rate was also seen under the mentioned stress. It is noteworthy that under 125 MPa, the creep lifetime and the strain rate of the reinforced alloy increased and decreased, respectively, compared to the piston alloy. Finally, by analyzing output data by the Minitab software, the sensitivity of the results to input parameters was investigated.
Go to article

Bibliography

[1] Ishikawa, K., Okuda, H. & Kobayashi, Y. (1997). Creep behaviors of highly pure aluminum at lower temperatures. Materials Science and Engineering A. 234-236, 154-156.
[2] Ishikawa, K. & Kobayashi, Y. (2004). Creep and rupture behavior of a commercial aluminum-magnesium alloy A5083 at constant applied stress. Materials Science and Engineering A, 387-389, 613-617.
[3] Dobes, F. & Milicka, K. (2004). Comparison of thermally activated overcoming of barriers in creep of aluminum and its solid solutions. Materials Science and Engineering A. 387-389, 595-598.
[4] Requena, G. & Degischer, H.P. (2006). Creep behavior of unreinforced and short fiber reinforced AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 420, 265-275.
[5] Li, L.T., Lin, Y.C., Zhou, H.M. & Jiang, Y.Q. (2013). Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Computational Materials Science. 73, 72-78.
[6] Fernandez-Gutierrez, R. & Requena, G.C. (2014). The effect of spheroidization heat treatment on the creep resistance of a cast AlSi12CuMgNi piston alloy. Materials Science and Engineering A. 598, 147-153.
[7] Zhang, Q., Zhang, W. & Liu, Y. (2015). Evaluation and mathematical modeling of asymmetric tensile and compressive creep in aluminum alloy ZL109. Materials Science and Engineering A. 628, 340-349.
[8] Wang, Q., Zhang, L., Xu, Y., Liu, C., Zhao, X., Xu, L., Yang,Y. & Cia, Y. (2020). Creep aging behavior of retrogression and re-aged 7150 aluminum alloy. Transactions of Nonferrous Metals Society of China. 30(10), 2599-2612.
[9] Ahn, C., Jo, I., Ji, C., Cho, S., Mishra, B. & Lee, E. (2020). Creep behavior of high-pressure die-cast AlSi10MnMg aluminum alloy. Materials Characterization. 167, 110495.
[10] Zhang, M., Lewis, R.J. & Gibeling, J.C. (2021). Mechanisms of creep deformation in a rapidly solidified Al-Fe-V-Si alloy. Materials Science and Engineering A. 805, 140796.
[11] Golshan, A.M.A., Aroo, H. & Azadi, M. (2021). Sensitivity analysis for effects of heat treatment, stress, and temperature on AlSi12CuNiMg aluminum alloy behavior under force-controlled creep loading. Applied Physics A. 127, 48.
[12] Pal, K., Navin, K. & Kurchania, R. (2020). Study of structural and mechanical behavior of Al-ZrO2 metal matrix nano-composites prepared by powder metallurgy method. Materials today: Proceeding. 26(Part 2), 2714-2719.
[13] Shuvho, M.B.A. Chowdhury, M.A., Kchaou, M., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum-based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442.
[14] Azadi, M. & Aroo, H. (2019).Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Materials Research Express. 6, 115020.
[15] Cadek, J., Oikawa, H. & Gustek, V. (1995).Threshold creep behavior of discontinuous aluminum and aluminum alloy matrix composites: an overview. Materials Science and Engineering A. 190, 9-23.
[16] Spigarelli, S. & Paoletti, C. (2018). A new model for the description of creep behavior of aluminum-based composites reinforced with nano-sized particles. Composites Part A. 112, 346- 355.
[17] Gupta, R. & Daniel, B.S.S.(2018). Impression creep behavior of ultrasonically processed in-situ Al3Ti reinforced aluminum composite. Materials Science and Engineering A. 733, 257-266.
[18] Gonga, D., Jianga, L., Guanc, J., Liua, K., Yua, Z. & Wua, G.(2020). Stable second phase: the key to high-temperature creep performance of particle reinforced aluminum matrix composite. Materials Science and Engineering A. 770, 138551.
[19] Zhao, Q., Zhang, H., Zhang, X., Qiu, F. & Jiang, Q. (2018). Enhanced elevated-temperature mechanical properties of Al-Mn-Mg containing TiC nano-particles by pre-strain and concurrent precipitation. Materials Science and Engineering A. 718, 305-310.
[20] Bhoi, N., Singh, H. & Pratap, S. (2020). Developments in the aluminum metal matrix composites reinforced by micro/nano-particles - A review. Journal of Composite Materials. 54(6), 813- 833.
[21] Azadi, M., Zomorodipour, M. & Fereidoon, A. (2021). Study of effect of loading rate on tensile properties of aluminum alloy and aluminum matrix nano-composite. Journal of Mechanical Engineering. 51(1), 9-18.
[22] Bhowmik, A., Dey, D. & Biswas, A. (2021). Characteristics study of physical, mechanical and tribological behavior of SiC/TiB2 dispersed aluminum matrix composite. Silicon. 06 January. DOI: https://doi.org/10.1007/s12633-020-00923-2.
[23] Zolfaghari, M., Azadi, M. & Azadi, M. (2021). Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, International Journal of Metalcasting. 15, 152-168.
[24] Balachandran, M., Devanathan, S., Muraleekrishnan, R. & Bhagawan, S.S. (2012). Optimizing properties of nano-clay-nitrile rubber (NBR) composites using face central composite design. Materials and Design. 35, 854-862.
[25] Kumar, V.A., Kumar, V.V.V., Menon, G.S., Bimaldev, S., Sankar, M., Shankar, K.V. & Balachandran, M. (2020). Analyzing the effect of B4C/Al2O3 on the wear behavior of Al-6.6Si-0.4Mg alloy using response surface methodology, International Journal of Surface Engineering and Interdisciplinary Materials Science. 8(2), 66-79.
[26] Sreedev, E.P., Govind, H.K., Raj, A., Adithyan, P.S., Narayan, H.A., Shankar, K.V. & Balachandran, M. (2020). Determining the significance of cobalt addition on the wear characteristics of Al-6.6Si-0.4Mg hypoeutectic alloy using design of experiment. Tribology in Industry. 42(2), 299-309.
[27] Shankar, K.V., Balachandran, M., Pillai, B.S., Krishnanunni, R.S., Harikrishnan, N.S., Harinarayanan, A.R. & Kumar, V.S. (2021). Influence of T6 heat treatment analysis on the tribological behavior of cast Al-12.2Si-0.3Mg-0.2Sr alloy using response surface methodology. Journal of Bio- and Tribo-Corrosion. 7(3), 96. [28] Anilkumar, V., Shankar, K.V., Balachandran, M., Joseph, J., Nived, S., Jayanandan, J., Jayagopan, J. & Surya Balaji, U.S. (2021). Impact of heat treatment analysis on the wear behavior of Al-14.2Si-0.3Mg-TiC composite using response surface methodology. Tribology in Industry. DOI: 10.24874/ti.988.10.20.04.
[29] Jiang, X., Zhang, Y., Yi, D., Wang, H., Deng, X. & Wang, B. (2017). Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables. Materials Characterization. 130, 181-187.
[30] Azadi, M., Safarloo, S., Loghman, F., Rasouli, R. Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles. In AIP Conference Proceedings, 1920, (2018), 020027. DOI: 10.1063/1.5018959
[31] Khisheh, S., Khalili, K., Azadi, M. & Zaker Hendouabadi, V. (2021). Influences of roughness and heat treatment on high-cycle bending fatigue properties of A380 aluminum alloy under stress-controlled cyclic loading. Materials Chemistry and Physics. 264, 124475.
[32] Rashnoo, K., Sharifi, M.J., Azadi, M. & Azadi, M. (2020). Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy. Materials Chemistry and Physics. 255, 123441.



Go to article

Authors and Affiliations

M. Azadi
1
ORCID: ORCID
A. Behmanesh
1
H. Aroo
1

  1. Faculty of Mechanical Engineering, Semnan University, Iran

This page uses 'cookies'. Learn more