Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we consider the development of reliable tools to assess the water quality and state of aquatic ecosystems in dynamic conditions a crucial need to address. One of such tools could be devised by monitoring the taxonomic structure of reservoirs’ microbiomes. Microbial taxa’s ecological and metabolic characteristics suggest their essential roles in maintaining the water ecosystem’s environmental equilibrium. The study aimed to explainthe role of diversity and seasonal variability of the microbial communities in the ecosystem stability on the example of Goczałkowice Reservoir (Poland). The structure of the reservoir microbiome was studied using bioinformatics and modeling techniques. Water was sampled periodically in July & November 2010, and April 2011 at four representative sites. The abundance and relative fraction of the limnetic taxonomic units were determined in respectto the physicochemical indices. Significant seasonal variations in the number of operational taxonomic units (OTU)were observed within the reservoir basin’s main body but not at the main tributary’s mouth. The highest valuesof the correlation coefficients between OTU and physicochemical variables were obtained for Burkholderiales,Pseudoanabenales, Rickettsiales, Roseiflexales, Methylophilales, Actinomycetales, and Cryptophyta. Thesemicroorganisms are proposed as indicators of environmental conditions and water quality. Metataxonomic analyses of the fresh water microbiome in the reservoir, showed that microorganisms constitute conservative communities that undergo seasonal and local changes regarding the relative participation of the identified taxa. Therefore, we propose that monitoring those variations could provide a reliable measure of the state of aquatic ecosystems.
Go to article

Bibliography

  1. Absalon, D., Matysik, M., Woźnica, A., Łozowski, B., Jarosz, W., Ulańczyk, R., Babczyńska, A. & Pasierbiński, A. (2020). Multi-faceted environmental analysis to improve the quality of anthropogenic water reservoirs (Paprocany reservoir case study). Sensors (Switzerland), 20(9). DOI:10.3390/s20092626
  2. Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133–140. https://doi.org/10.1007/s11625-006-0013-6
  3. Anderson-Glenna, M. J., Bakkestuen, V. & Clipson, N. J. W. (2008). Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiology Ecology, 64(3), 407–418. DOI:10.1111/j.1574-6941.2008.00480.x
  4. Aneja, K. (2008). A textbook of basic and applied microbiology. New Age International.
  5. Arora-Williams, K., Olesen, S. W., Scandella, B. P., Delwiche, K., Spencer, S. J., Myers, E. M., Abraham, S., Sooklal, A. & Preheim, S. P. (2018). Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake 06 Biological Sciences 0605 Microbiology 06 Biological Sciences 0602 Ecology 06 Biological Sciences 0604 Genetics. Microbiome, 6(1), 1–16. DOI:10.1186/s40168-018-0556-7
  6. Babczyńska, A., Tarnawska, M., Łaszczyca, P., Migula, P., Łozowski, B., Woźnica, A. & Augustyniak, M. (2021). Stress proteins concentration in caged Cyprinus carpioas a tool to monitor ecological stability in a model dam reservoir. Archives of Environmental Protection, 47(1), 101-116. DOI:10.24425/aep.2021.136452
  7. Beier, S., Witzel, K.-P. K.-P. & Marxsen, J. (2008). Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Applied and Environmental Microbiology, 74(1), 188–199. DOI:10.1128/AEM.00327-07
  8. Bibby, K., Viau, E. & Peccia, J. (2010). Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Research, 44(14), 4252–4260. DOI:10.1016/j.watres.2010.05.039
  9. Chao, A., Chiu, C.-H. & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1558), 3599–3609. DOI:10.1098/rstb.2010.0272
  10. Chorus, I. & Bartram, J. (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management.
  11. Cottrell, M. T. & Kirchman, D. L. (2000). Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66(4), 1692–1697.
  12. DeLong, E. F. (2005). Microbial community genomics in the ocean. Nature Reviews. Microbiology, 3(6), 459–469. DOI:10.1038/nrmicro1158
  13. DeLong, E. F. & Béjà, O. (2010). The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biology, 8(4), 1–5. DOI:10.1371/journal.pbio.1000359
  14. DeLong, E. F., Taylor, L. T., Marsh, T. L. & Preston, C. M. (1999). Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Applied and Environmental Microbiology, 65(12), 5554–5563.
  15. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. DOI:10.1128/AEM.03006-05
  16. Eiler, A. & Bertilsson, S. (2004). Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology, 6(12), 1228–1243. DOI:10.1111/j.1462-2920.2004.00657.x
  17. Falkowski, P. G., Fenchel, T. & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034–1039. DOI:10.1126/science.1153213
  18. Fredricks, D. N. (2006). Introduction to the Rickettsiales and other intracellular prokaryotes. In The Prokaryotes (pp. 457–466). Springer.
  19. Fuhrman, J. a, Schwalbach, M. S. & Stingl, U. (2008). Proteorhodopsins: an array of physiological roles? Nature Reviews. Microbiology, 6(6), 488–494. DOI:10.1038/nrmicro1893
  20. Ghai, R., Hernandez, C. M., Picazo, A., Mizuno, C. M., Ininbergs, K., Díez, B., Valas, R., DuPont, C. L., McMahon, K. D., Camacho, A. & Rodriguez-Valera, F. (2012). Metagenomes of Mediterranean Coastal Lagoons. Scientific Reports, 2, 1–13. DOI:10.1038/srep00490
  21. Ghai, R., Rodŕíguez-Valera, F., McMahon, K. D., Toyama, D., Rinke, R., de Oliveira, T. C. S., Garcia, J. W., de Miranda, F. P. & Henrique-Silva, F. (2011). Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE, 6(8). DOI:10.1371/journal.pone.0023785
  22. Glockner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A. & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Applied and Environmental Microbiology, 66(11), 5053–5065. DOI:10.1128/AEM.66.11.5053-5065.2000
  23. Gwiazda, R., Woźnica, A., Łozowski, B., Kostecki, M. & Flis, A. (2014). Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir. Oceanological and Hydrobiological Studies, 43(4). DOI:10.2478/s13545-014-0160-9
  24. Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methe, B., DeSantis, T. Z., Petrosino, J. F., Knight, R. & Birren, B. W. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21(3), 494–504. DOI:10.1101/gr.112730.110
  25. Hahn, M. W., Kasalicky, V., Jezbera, J., Brandt, U., Jezberova, J. & Simek, K. (2010). Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(6), 1358–1365. DOI:10.1099/ijs.0.013292-0
  26. Hahn, M. W., Kasalicky, V., Jezbera, J., Brandt, U. & Simek, K. (2010). Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(12), 2946–2950. DOI:10.1099/ijs.0.022384-0
  27. Hodges, B. & Dallimore, C. (2006). Estuary, Lake and Coastal Ocean Model: ELCOM v2. 2 Science Manual. Water, 62. DOI:10.1016/j.ecss.2007.05.033
  28. Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. (2019). Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and Oceanography, 64(3), 1347–1370. DOI:10.1002/lno.11120
  29. Kasalicki, V., Jezbera, J., Simek, K., Hahn, M. W., Kasalicky, V., Jezbera, J., Simek, K. & Hahn, M. W. (2010). Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. International Journal of Systematic and Evolutionary Microbiology, 60(12), 2710–2714. DOI:10.1099/ijs.0.018952-0
  30. Kostecki, M. (2021). A new antrhropogenic lake Kuźnica Warężyńska: thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration. Archives of Environmental Protection, 47(2), 115-127. DOI:10.24425/aep.2021.137283
  31. Logares, R., Brate, J., Heinrich, F., Shalchian-Tabrizi, K., Bertilsson, S., Brte, J., Heinrich, F., Shalchian-Tabrizi, K. & Bertilsson, S. (2010). Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Molecular Biology and Evolution, 27(2), 347–357. DOI:10.1093/molbev/msp239
  32. Malmstrom, R. R., Kiene, R. P., Vila, M. & Kirchman, D. L. (2005). Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnology and Oceanography, 50(6), 1924–1931. DOI:10.4319/lo.2005.50.6.1924
  33. Matysik, M., Absalon, D., Habel, M. & Maerker, M. (2020). Surface water quality analysis using CORINE data: An application to assess reservoirs in Poland. Remote Sensing, 12(6), 16–20. DOI:10.3390/rs12060979
  34. Mendez-Garcia, C., Pelaez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V. & Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6(475). DOI:10.3389/fmicb.2015.00475
  35. Miller, S. R., Strong, A. L., Jones, K. L. & Ungerer, M. C. (2009). Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13), 4565–4572. DOI:10.1128/AEM.02792-08
  36. Percent, S. F., Frischer, M. E., Vescio, P. A., Duffy, E. B., Milano, V., McLellan, M., Stevens, B. M., Boylen, C. W. & Nierzwicki-Bauer, S. A. (2008). Bacterial community structure of acid-impacted lakes: What controls diversity? Applied and Environmental Microbiology, 74(6), 1856–1868. DOI:10.1128/AEM.01719-07
  37. Pernthalerlr, J., Sattlerl, B., Simek, K., Schwarzenbacherl, A., Psennerl, R., Pernthaler, J., Sattler, B., Šimek, K., Schwarzenbacher, A. & Psenner, R. (1996). Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology, 10(3), 255–263. DOI:10.3354/ame010255
  38. Salcher, M. M., Pernthaler, J. & Posch, T. (2011). Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria “that rule the waves” (LD12). The ISME Journal, 5(8), 1242–1252. DOI:10.1038/ismej.2011.8
  39. Sekar, R., Pernthaler, A., Pernthaler, J., Posch, T., Amann, R. & Warnecke, F. (2003). An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 69(5), 2928–2935. DOI10.1128/AEM.69.5.2928
  40. Smith, V. H., Joye, S. B. & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51(1, part 2), 351–355. DOI:10.4319/lo.2006.51.1_part_2.0351
  41. Stanimirova, I., Woznica, A., Plociniczak, T., Kwasniewski, M. & Karczewski, J. (2016). A modified weighted mixture model for the interpretation of spatial and temporal changes in the microbial communities in drinking water reservoirs using compositional phospholipid fatty acid data. Talanta, 160, 148–156. DOI:10.1016/j.talanta.2016.07.006
  42. Thatoi, H., Behera, B. C., Mishra, R. R. & Dutta, S. K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Annals of Microbiology, 63(1), 1–19. DOI:10.1007/s13213-012-0442-7
  43. USEPA. (2006). Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC Medium. USEPA.
  44. Vaishnava, S., Yamamoto, M., Severson, K. M., Ruhn, K. a, Yu, X., Koren, O., Ley, R., Wakeland, E. K. & Hooper, L. V. (2011). The Antibacterial Lectin RegIII. Science, 334(October), 255–258.
  45. Vila-Costa, M., Simo, R., Harada, H., Gasol, J. M., Slezak, D., Kiene, R. P., Simó, R., Harada, H., Gasol, J. M., Slezak, D. & Kiene, R. P. (2006). Dimethylsulfoniopropionate uptake by marine phytoplankton. Science (New York, N.Y.), 314(5799), 652–654. DOI:10.1126/science.1131043
  46. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. DOI:10.1128/AEM.00062-07
  47. Warnecke, F., Amann, R. & Pernthaler, J. (2004). Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environmental Microbiology, 6(3), 242–253. DOI:10.1111/j.1462-2920.2004.00561.x
  48. Woznica, A., Nowak, A., Ziemski, P., Kwasniewski, M. & Bernas, T. (2013). Stimulatory Effect of Xenobiotics on Oxidative Electron Transport of Chemolithotrophic Nitrifying Bacteria Used as Biosensing Element. PLoS ONE, 8(1). DOI:10.1371/journal.pone.0053484
  49. Zeng, Y., Kasalický, V., Šimek, K., Koblízek, M., Kasalicky, V., Simek, K. & Koblizek, M. (2012). Genome sequences of two freshwater betaproteobacterial isolates, limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. Journal of Bacteriology, 194(22), 6302–6303. DOI:10.1128/JB.01481-12
  50. Zwart, G., Crump, B. C., Kamst-van Agterveld, M. P., Hagen, F. & Han, S. K. (2002). Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 28(2), 141–155. DOI:10.3354/ame028141
Go to article

Authors and Affiliations

Andrzej Woźnica
1
Mirosław Kwaśniewski
2
Karolina Chwiałkowska
2
Bartosz Łozowski
1
Damian Absalon
1
Marcin Libera
3
Michał Krzyżowski
1
Agnieszka Babczyńska
1

  1. University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
  2. Medical University of Bialystok, Faculty of Medicine, Bialystok, Poland
  3. University of Silesia in Katowice, Faculty of Science and Technology, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Variability of stress proteins concentration in caged carp exposed to transplantation experiment model dam reservoir was caused only by natural (climatic and biological) conditions. Thus, the reference data of stress proteins concentration range in young carp individuals were obtained. Metallothionein, HSP70 and HSP90 protein concentrations as biomarkers were assayed in the livers, gills and muscles of six-month-old (summer) or nine-month-old (autumn) carp individuals in relation to the site of encaging, season (summer or autumn), the term of sampling (1, 2 or 3 weeks after the transplantation) and tissue. Physicochemical analyses of the condition of water as well as pollution detection were conducted during each stage of the experiment. As the result of this study, the range of the variability of the stress protein concentration in young carp individuals was obtained. According to the analyses of the aquatic conditions of a reservoir with no detectable pollutants, we conclude that the variability in the stress protein concentration levels in the groups that were compared is solely the result of the natural conditions. Future regular monitoring of the reservoir using the transplantation method and young carp individuals will be both possible and reliable. Moreover, the range of variability in the stress protein concentrations that were measured in the young C. carpio individuals acquired from the model dam reservoir in relation to all of the studied factors may be applied in the monitoring of any other similar reservoir.
Go to article

Bibliography

1. Absalon, D., Matysik, M., Woźnica, A., Łozowski, B., Jarosz, W., Ulańczyk, R., Babczyńska, A. & Pasierbiński, A. (2020). Multi-Faceted Environmental Analysis to Improve the Quality of Anthropogenic Water Reservoirs (Paprocany Reservoir Case Study). Sensors, 20,2626, DOI: 10.3390/s20092626.
2. Ahmad M., Zuberi, A., Ali M., Sye A., ul Hassan Murtaza M, Khan A. & Kamran M. (2020). Effect of acclimated temperature on thermal tolerance, immune response and expression of HSP genes in Labeo rohita, Catla catla and their intergeneric hybrids. Journal of Thermal Biology, 89, 102570, DOI: 10.1016/j.jtherbio.2020.102570.
3. Allert, A.L., DiStefano, R.J., Fairchild, J.F., Schmitt, C.J. McKee, M.J., Girondo, J.A., Brumbaugh, W.G. & May, T.W. (2013). Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA. Ecotoxicology, 22, pp. 506–521, DOI: 10.1007/s10646-013-1043-3.
4. Antonopoulou, E., Chatzigiannidou, I., Feidantsis, K., Kounna, C. & Chatzifotis, S. (2020). Effect of water temperature on cellular stress responses in meagre (Argyrosomus regius). Fish Physiol Biochem 46, pp.1075–1091, DOI: 10.1007/s10695-020-00773-0.
5. Barton, B.A. (2002). Stress in Fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42, pp. 517–525, DOI: 10.1093/icb/42.3.517.
6. Barton, B.A., & Iwama, I.W. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1, pp. 3–26, DOI: 10.1016/0959-8030(91)90019-G.
7. Beltramini, M., Zambenedetti, P., Wittkowski, W. & Zatta, P. (2004). Effects of steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Res. 1013: pp. 134–141.
8. Bernet, D., Schmidt-Posthaus, H., Wahli, T. & Burkhardt-Holm, P. 2000. Effects of wastewater on fish health: an integrated approach to biomarker responses in brown trout (Salmo trutta L.). J. Aquat. Ecos. Stress Recov., 8, pp. 143–151, DOI: 10.1023/A:1011481632510.
9. Bilnik, A., Świercz, T. & Siudy, A. (2004). Zbiornik Goczałkowicki wczoraj i dziś. Górnośląskie przedsiębiorstwo wodociągów w Katowicach, Goczałkowice; (Goczałkowice Reservoir yesterday and today. Silesian Waterworks Plc in Katowice, Goczałkowice; ).
10. Bougas, B., Normandeau E, Grasset J., Defo M.A., Campbell, P.G.C., Couture P. & Bernatchez L.(2016). Transcriptional response of yellow perch to changes in ambient metal concentrations—A reciprocal field transplantation experiment. Aquat. Toxicol., 173, pp. 132-142, DOI: 10.1016/j.aquatox.2015.12.014.
11. Bradford, M.M. (1976). Rapid and sensitive method for the quantitation of mikrogram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem., 172, pp. 248–254, DOI: 10.1006/abio.1976.9999.
12. Brylińska, M. (2000). Ryby słodkowodne Polski. Karp. Wydawnictwo Naukowe PWN, Warszawa. Conte, F.S. (2004). Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci., 86, pp. 205–223, DOI: 10.1016/j.applanim.2004.02.003.
13. Coyle, P., Philcox, J.C., Carey, L.C. & Rofe, A.M. (2002). Metallothionein: The multipurpose protein. Cell. Mol. Life Sci., 59, pp. 627–647, DOI: 10.1007/s00018-002-8454-2.
14. Cretì, P., Trinchella, F. & Scudiero, R. (2010). Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems. Fish Physiol. Biochem., 36, pp. 101–107, DOI: 10.1007/s10661-009-0948-z.
15. Crivelli, A.J. (1981). The biology of the common carp, Cyprinus carpio L. in the Camargue, southern France . J. Fish Biol. 18, pp. 271–290, DOI: 10.1111/j.1095-8649.1981.tb03769.x.
16. Crowther, J.R. (2009). The ELISA Guidebook 2-nd ed. Springer-Verlag Gmbh.
17. Dang, ZC, Berntssen, M.H.G., Lundebye, A.K., Flik, G., Wendelaar Bonga, S.E. & Lock, R.A.C. (2001). Metallothionein and cortisol receptor expression in gills of Atlantic salmon, Salmo salar, exposed to dietary cadmium. Aquat. Toxicol. 53, pp. 91–101, DOI: 10.1016/s0166-445x(00)00168-5.
18. Mazon, F.A, Nolan, DT, Lock, R.A.C., Bonga, W.S.E. & Fernandes, M.N. (2007). Opercular epithelial cells: A simple approach for in vitro studies of cellular responses in fish. Toxicology, 230, pp. 53–63, DOI: 10.1016/j.tox.2006.10.027.
19. Dou, X., Tian, X., Zheng, Y., Huang, J., Shen, Z., Li, H., Wang, X., Mo, F., Wang, W., Wang, S. & Shen, H. (2014). Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav. Brain Res. 273, pp. 133–138, DOI: 10.1016/j.bbr.2014.07.040.
20. El-Khayat, H.M.M., Abu Taleb, H.M., Helal, N.S. & Ghoname, S.I. (2020). Assessment of metallothionein expression in Biomphalaria alexandrina snails and Oreochromis niloticus Fish as a biomarker for water pollution with heavy metals. Egyptian Journal of Aquatic Biology and Fisheries, 24, pp. 209-223, DOI: 10.21608/ejabf.2020.80032.
21. Ellis, J., Cummings, V., Hewitt, L., Thrush, S. & Norkko, A. (2002). Determining effects of suspended sediment on condition of a suspension feeding bivalve (Atrina zelandica): results of a survey, a laboratory experiment and a field transplant experiment. J. Exp. Mar. Biol. Ecol., 267, pp. 147–174, DOI: 10.1016/S0022-0981(01)00355-0.
22. Esyakova, O.A & Voronin V.M. (2020). Bioindication methods in environmental engineering. IOP Conf. Ser.: Mater. Sci. Eng. 862 062009, DOI: 10.1088/1757-899X/862/6/062009.
23. Fåhræus-Van Ree, G.E. & Payne, J.F. (2005). Endocrine disruption in the pituitary of white sucker (Catostomus commersoni) caged in a lake contaminated with iron-ore mine tailings. Hydrobiologia, 32, pp. 221–224, DOI: 10.1007/s10750-004-9017-3.
24. Falfushynska, H.I., Romanchuk, L.D. & Stolyar, O.B. (2005). Seasonal and spatial comparison of metallothioneins in frog Rana ridibunda from feral populations. Ecotoxicology 17, pp. 781–788, DOI: 10.1007/s10646-008-0229-6.
25. Falfushynska, H.I. & Stolyar, O.B. (2009). Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotox. Environ. Safe., 72, pp. 729–736. DOI: 10.1016/j.ecoenv.2008.04.006.
26. FAO. Fishstat plus (v. 2.30). FAO, Rome; 2007
27. Fernández-Delgado, C. (1990). Life history patterns of the common carp, Cyprinus carpio, in the estuary of Guadalquivir river in south-west Spain. Hydrobiologia, 206, pp. 19–28, DOI: 10.1007/BF00018966.
28. Gandar, A., Jean, S., Canal J., Marty-Gasset, N., Gilbert, F. & Laffaille, P. (2016). Multistress effects on goldfish (Carassius auratus) behavior and metabolism. Environ Sci Pollut Res 23, pp. 3184–3194, DOI: 10.1007/s11356-015-5147-6
29. Guinot, D Ureńa, R., Pastor, A., Varó, I, del Ramo, J. & Torreblanca, A. (2010). Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata. Chemosphere, 87, pp. 1215–1221, DOI: 10.1016/j.chemosphere.2012.01.020.
30. Higashimoto, M., Sano, M., Kondoh, M. & Sato, M. (2002). Different responses of metallothionein and leptin induced in the mouse by fasting stress. Biol. Trace Elem. Res., 75, pp: 75–84, DOI: 10.1385/BTER:89:1:75.
31. Hybská, H., Mitterpach, J., Samešová, D., Schwarz M., Fialová, J. & Veverková D. (2018). Assessment of ecotoxicological properties of oils in water. Archives of Environmental Protection, 44(4), pp. 31-37. DOI: 10.24425/aep.2018.122300
32. Hyllner, S.J., Andersson, T., Haux, C. & Olsson, P.E. (1989). Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J. Cell Physiol., 139, pp. 24–28, DOI: 10.1002/jcp.1041390105.
33. Kamel, N., Burgeot, T., Banni, M., Chalghaf, M., Devin, S., Minier, C. & Boussetta, H. (2014). Effects of increasing temperatures on biomarker responses and accumulation of hazardous substances in rope mussels (Mytilus galloprovincialis) from Bizerte lagoon. Environ. Sci. Pollut. R., 21, pp. 6108–6123. DOI: 10.1007/s11356-014-2540-5.
34. Kazour, M. & Amara, R. (2020). Is blue mussel caging an efficient method for monitoring environmental microplastics pollution? Science of The Total Environment, 710, 135649. DOI: 10.1016/j.scitotenv.2019.135649
35. Klobučar, G.I.V., Štambuk, A.S., Pavlica, M., Sertić Perić, M., Kutuzović Hackenberger, B. & Hylland, K. (2010). Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio). Ecotoxicology 19, pp. 77–84, DOI: 10.1007/s10646-009-0390-6.
36. Köprücü, K. & Rahmi, A. 2004. The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic. Biochem. Phys. 80, pp. 47–53, DOI: 10.1016/j.pestbp.2004.05.004.
37. Langston, W.J., Chesman, B.S., Burt, G.R., Pope, N.D. & McEvoy, J. (2002). Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Mar. Environ. Res., 53, pp. 263–293, DOI: 10.1016/S0141-1136(01)00113-1.
38. Ming, Y., Chenyuan, P., Jun, B. & Kejian, W. 2014. Regulation of metallothionein gene expression in response to benzo[a]pyrene exposure and bacterial challenge in marine cultured black porgy (Acanthopagrus schlegelii). Chin. J. Geochem. 33, pp. 404–410, DOI 10.1007/s11631-014-0705-z.
39. Mocchegiani, E., Giacconi, R., Cipriano, C., Gasparini, N., Orlando, F., Stecconi, R., Muzzioli, M., Isani, G. & Carpene, E. (2002). Metallothioneins (I+II) and thyroid–thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech. Ageing Dev., 123, pp. 675–694, DOI: 10.1016/S0047-6374(01)00414-6.
40. Oikari, A. (2006). Caging techniques for field exposures of fish to chemical contaminants. Aquat. Toxicol., 78, pp. 370–81, DOI: 10.1016/j.aquatox.2006.03.010.
41. Osman, A.G.M., Wuertz, S. & Mohammed-Geba, K. (2019). Lead-induced heat shock protein (HSP70) and metallothionein (MT) gene expression in the embryos of African catfish Clarias gariepinus (Burchell, 1822). Scientific African 3, e00056.
42. Park, M.S., Shin, H.S., Lee, J., Kil, G.S. & Choi, C.Y. (2010). Influence of quercetin on the n physiological response to cadmium stress in olive flounder, Paralichthys olivaceus: effects on hematological and biochemical parameters Mol. Cell. Toxicol., 6, pp. 151–159. DOI: 10.1007/s13273-010-0022-5.
43. Rahman, M.M., Kadowaki, S., Balcombe, S.R. & Wahab, A. (2010). Common carp (Cyprinus carpio L.) alters its feedingiche in response to changing food resources: direct observations in simulated ponds. Ecol. Res., 25, pp. 303–309, DOI: 10.1007/s11284-009-0657-7.
44. Schofield, P.J., Loftus, W.F., Kobza, M.R., Cook, M.I. & Slone, D.H. (2010). Tolerance of nonindigenous cichlid fishes (Cichlasoma urophthalmus, Hemichromis letourneuxi) to low temperature: laboratory and field experiments in south Florida. Biol. Invasions, 12, pp. 2441–2457.
45. Shaw, J.P., Large, A.T., Livingstone, D.R., Doyotte, A., Renger, J., Chipman, J.K. & Peters, L.D. (2002). Elevation of cytochrome P450-immunopositive protein and DNA damage in mussels (Mytilus edulis) transplanted to a contaminated site. Mar. Environ. Res, 54, pp. 505–509, DOI: 10.1016/S0141-1136(02)00191-5 .
46. Shi, J., Li X, He, T., Wang ,J., Wang, Z., Li, P., Lai Y, Sanganyado, E. & Liu, W. (2018). Integrated assessment of heavy metal pollution using transplanted mussels in eastern Guangdong, China. Environmental Pollution, 243(A), pp. 601-609, DOI: 10.1016/j.envpol.2018.09.006.
47. Sogawa, N., Sogawa, C.A., Fukuoka, H., Mukubo, Y., Yoneyama, T., Okano, Y., Furuta, H. & Onodera, K. (2003). The changes of hepatic metallothionein synthesis and the hepatic damage induced by starvation in mice. Method. Find. Exp. Clin., 25, pp. 601–606, DOI: 10.1358/mf.2003.25.8.778079.
48. Tarnawska, M., Augustyniak, M., Łaszczyca, P., Migula, P., Irnazarow, I., Krzyżowski, M. & Babczyńska, A. (2019). Immune response of juvenile common carp (Cyprinus carpio L.) exposed to a mixture of sewage chemicals. Fish & Shellfish Immunology, 88, pp. 17-27, DOI: 10.1016/j.fsi.2019.02.049.
49. Tian, X., Zheng, Y., Li, Y., Shen, Z., Tao, L., Dou, X., Qian, J. & Shen, H. (2014). Psychological stress induced zinc accumulation and up-regulation of ZIP14 and metallothionein in rat liver. BMC Gastroenterol. 14, 32. DOI: 10.1186/1471-230X-14-32
50. Todd, A.S., McKnight, D.M., Jaros, C.L. & Marchitto, T.M. (2007). Effects of Acid Rock Drainage on Stocked Rainbow Trout (Oncorhynchus mykiss): An In-Situ, Caged Fish Experiment. Environ. Monit. Assess., 130, pp. 111-127, DOI: 10.1007/s10661-006-9382-7
51. Traven, L., Mićović, V., Vukić Lušić, D. & Smital, T. (2013). The responses of the hepatosomatic index (HSI), 7-ethoxyresorufin-O-deethylase (EROD) activity and glutathione-S-transferase (GST) activity in sea bass (Dicentrarchus labrax, Linnaeus 1758) caged at a polluted site: implications for their use in environmental risk assessment. Environ. Monit. Assess., 185, pp. 9009-9018, DOI: 10.1007/s10661-013-3230-3.
52. Ulańczyk R., Klis Cz., Bartosz Łozowski B., Babczynska A., Woźnica A., Długosz J. & Wilk-Wozniak, E. (2021). Phytoplankton production in relation to simulated hydro- and thermodynamics during a hydrological wet year – Goczałkowice reservoir (Poland) case study. J. Ecol. Ind., 121, 106991. DOI: 10.1016/j.ecolind.2020.106991
53. Van Cleef, K.A., Kaplan, L.A.E. & Crivello, J.F. (2000). The relationship between reproductive status and metallothionein mRNA expression in the common killifish, Fundulus heteroclitus. Environ. Biol. Fish. 57, pp. 97-105, DOI: 10.1023/A:1007579718536.
54. Van Cleef-Toedt, K.A., Kaplan, L.A.E. & Crivello, J.F. (2000). Metallothionein mRNA expression in spawning and non-spawning Fundulus heteroclitus following acute exposure to starvation and waterborne cadmium. Fish Physiol. Biochem., 22, pp. 319–327, DOI: 10.1023/A:1007854106269.
55. Vašák, M. & Meloni, G. 2011. Chemistry and biology of mammalian metallothioneins. J. Biol. Inorg. Chem. 16, pp. 1067-78, DOI: 10.1007/s00775-011-0799-2.
56. Walker, C.J., Gelsleichter. J., Adams, D.H. & Manire, C.A. (2014). Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo. Fish Physiol. Biochem., 40, pp. 1361-1371, DOI: 10.1007/s10695-014-9930-y.
57. Werner, J., Wautier, K., Evans, R.E., Baron, C.L., Kidd, K. & Palace, V. (2003). Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquat. Toxicol., 62, pp. 321-328, DOI: 10.1016/S0166-445X(02)00104-2.
58. Wu, R.S.S., & Shin, P.K.S. (1998). Transplant experiments on growth and mortality of the fan mussel Pinna bicolor. Aquaculture 163, pp. 47-62, https://www.sciencedirect.com/science/article/pii/S004484869800218X.
59. Yukawa, S., Yustiawati, Syawal, M.S., Kobayashi, K., Hosokawa, T., Saito, T., Tanaka, S. & Kurasaki, M. (2014). Contents of hepatic and renal metallothioneins in Hyposarcus pardalis: for construction of biomarker for heavy metal contamination in environments. Environ. Earth Sci., 71, pp.1945-1952, DOI: 10.1007/s12665-013-2600-z.
60. Załęska-Radziwiłł, M., Łebkowska, M., Affek, K. & Zarzeczna, A. (2011). Environmental risk assessment of selected pharmaceuticals present in surface water in relation to animals. Archives of Environmental Protection, 37(3), pp. 31-42.
61. Zgórska, A., Arendarczyk, A.& Grabińska-Sota, E. 2011. Toxicity assessment of hospital wastewater by the use of a biotest battery. Archives of Environmental Protection, 37(3), pp. 55-61.
62. http://www.fao.org/fishery/culturedspecies/Cyprinus_carpio/en [November 25, 2020]
63. https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/W.123278?lng=pl [November 25, 2020]
Go to article

Authors and Affiliations

Agnieszka Babczyńska
1
Monika Tarnawska
1
Piotr Łaszczyca
1
ORCID: ORCID
Paweł Migula
1
Bartosz Łozowski
1
Andrzej Woźnica
1
Ilgiz Irnazarow
2
ORCID: ORCID
Maria Augustyniak
1

  1. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
  2. Institute of Ichtyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Poland

This page uses 'cookies'. Learn more