Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An attempt is made in the current research to obtain the fundamental buckling torque and the associated buckled shape of an annular plate. The plate is subjected to a torque on its outer edge. An isotropic homogeneous plate is considered. The governing equations of the plate in polar coordinates are established with the aid of the Mindlin plate theory. Deformations and stresses of the plate prior to buckling are determined using the axisymmetric flatness conditions. Small perturbations are then applied to construct the linearised stability equations which govern the onset of buckling. To solve the highly coupled equations in terms of displacements and rotations, periodic auxiliary functions and the generalised differential quadrature method are applied. The coupled linear algebraic equations are a set of homogeneous equations dealing with the buckling state of the plate subjected to a unique torque. Benchmark results are given in tabular presentations for combinations of free, simply-supported, and clamped types of boundary conditions. It is shown that the critical buckling torque and its associated shape highly depend upon the combination of boundary conditions, radius ratio, and the thickness ratio.

Go to article

Bibliography

[1] W.R. Dean. The elastic stability of an annular plate. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(737):268–284, 1924. doi: 10.1098/rspa.1924.0068.
[2] J. Tani and T. Nakamura. Dynamic stability of annular plates under pulsating torsion. Journal of Applied Mechanics, 47(3):595–600, 1980. doi: 10.1115/1.3153739.
[3] J. Tani. Dynamic stability of orthotropic annular plates under pulsating torsion. The Journal of the Acoustical Society of America, 69(6):1688–1694, 1981. doi: 10.1121/1.385948.
[4] D. Durban and Y. Stavsky. Elastic buckling of polar-orthotropic annular plates in shear. International Journal of Solids and Structures, 18(1):51–58, 1982. doi: 10.1016/0020-7683(82)90015-4.
[5] T. Irie, G. Yamada, and M. Tsujino. Vibration and stability of a variable thickness annular plate subjected to a torque. Journal of Sound and Vibration, 85(2):277–285, 1982. doi: 10.1016/0022-460X(82)90522-3.
[6] T. Irie, G. Yamada, and M. Tsujino. Buckling loads of annular plates subjected to a torque. Journal of Sound and Vibration, 86(1):145–146, 1983. doi: 10.1016/0022-460X(83)90951-3.
[7] J. Zajączkowski. Stability of transverse vibration of a circular plate subjected to a periodically varying torque. Journal of Sound and Vibration, 89(2):273–286, 1983. doi: 10.1016/0022-460X(83)90394-2.
[8] H. Doki and J. Tani. Buckling of polar orthotropic annular plates under internal radial load and torsion. International Journal of Mechanical Sciences, 27:429–437, 1985. doi: 10.1016/0020-7403(85)90033-5.
[9] M. Hamada and T. Harima. In-plane torsional buckling of an annular plate. Bulletin of JSME, 29(250):1089–1095, 1986. doi: 10.1299/jsme1958.29.1089.
[10] E. Ore and D. Durban. Elastoplastic buckling of annular plates in pure shear. Journal of Applied Mechanics, 56(3):644–651, 1989. doi: 10.1115/1.3176141.
[11] Chang-Jun Cheng and Xiao-an Lui. Buckling and post-buckling of annular plates in shearing, Part I: Buckling. Computer Methods in Applied Mechanics and Engineering, 92(2):157–172, 1991. doi: 10.1016/0045-7825(91)90237-Z.
[12] Chang-Jun Cheng and Xiao-an Lui. Buckling and post-buckling of annular plates in shearing, Part II: Post-buckling. Computer Methods in Applied Mechanics and Engineering, 92(2):173–191, 1991. doi: 10.1016/0045-7825(91)90238-2.
[13] P. Singhatanadgid and V. Ungbhakorn. Scaling laws for buckling of polar orthotropic annular plates subjected to compressive and torsional loading. Thin-Walled Structures, 43(7):1115–1129, 2005. doi: 10.1016/j.tws.2004.11.004.
[14] T.X. Wu. Analytical study on torsional vibration of circular and annular plate. Journal of Mechanical Engineering Science, 220(4):393–401, 2006. doi: 10.1243/09544062JMES167.
[15] R. Maretic, V. Glavardanov, and D. Radomirovic. Asymmetric vibrations and stability of a rotating annular plate loaded by a torque. Meccanica, 42(6):537–546, 2007. doi: 10.1007/s11012-007-9080-8.
[16] S.E. Ghiasian, Y. Kiani, M. Sadighi, and M.R. Eslami. Thermal buckling of shear deformable temperature dependent circular annular FGM plates. International Journal of Mechanical Sciences, 81:137–148, 2014. doi: 10.1016/j.ijmecsci.2014.02.007.
[17] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Computers & Mathematics with Applications, 75(5):1566–1581, 2018. doi: 10.1016/j.camwa.2017.11.021.
[18] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric compressive stability of rotating annular plates. European Journal of Computational Mechanics, 2019. doi: 10.1080/17797179.2018.1560989.
[19] J.N. Reddy. Mechanics of Laminated Composite Plates and Shells, Theory and Application. CRC Press, 2nd Edition, 2003.
[20] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric thermal buckling of annular plates on a partial elastic foundation. Journal of Thermal Stresses, 40(8):1015–1029, 2017. doi: 10.1080/01495739.2016.1265474.
[21] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric thermo-inertial buckling of annular plates. Acta Mechanica, 228(4):1493–1509, 2017. doi: 10.1007/s00707-016-1772-5.
[22] D.O. Brush and B.O. Almroth. Buckling of Bars, Plates, and Shells. McGraw-Hill, New York, 1975.
[23] M.R. Eslami. Thermo-Mechanical Buckling of Composite Plates and Shells. Amirkabir University Press, Tehran, 2010.
[24] Y. Kiani Y and M.R. Eslami. An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B: Engineering, 45(1):101–110, 2013. doi: 10.1016/j.compositesb.2012.09.034.
[25] F. Tornabene, N. Fantuzzi F. Ubertini, and E. Viola. Strong formulation finite element method based on differential quadrature: a survey. Applied Mechanics Reviews, 67(2):020801-020801-55, 2015. doi: 10.1115/1.4028859.
Go to article

Authors and Affiliations

Hamed Bagheri
1
Yaser Kiani
2
Mohammad Reza Eslami
1

  1. Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
  2. Faculty of Engineering, Shahrekord University, Shahrekord, Iran.
Download PDF Download RIS Download Bibtex

Abstract

This study was conducted to predict the yield and biomass of lentil (Lens culinaris L.) affected by weeds using artificial neural network and multiple regression models. Systematic sampling was done at 184 sampling points at the 8-leaf to early-flowering and at lentil maturity. The weed density and height as well as canopy cover of the weeds and lentil were measured in the first sampling stage. In addition, weed species richness, diversity and evenness were calculated. The measured variables in the first sampling stage were considered as predictive variables. In the second sampling stage, lentil yield and biomass dry weight were recorded at the same sampling points as the first sampling stage. The lentil yield and biomass were considered as dependent variables. The model input data included the total raw and standardized variables of the first sampling stage, as well as the raw and standardized variables with a significant relationship to the lentil yield and biomass extracted from stepwise regression and correlation methods. The results showed that neural network prediction accuracy was significantly more than multiple regression. The best network in predicting yield of lentil was the principal component analysis network (PCA), made from total standardized data, with a correlation coefficient of 80% and normalized root mean square error of 5.85%. These values in the best network (a PCA neural network made from standardized data with significant relationship to lentil biomass) were 79% and 11.36% for lentil biomass prediction, respectively. Our results generally showed that the neural network approach could be used effectively in lentil yield prediction under weed interference conditions.

Go to article

Authors and Affiliations

Alireza Bagheri
Negin Zargarian
Farzad Mondani
Iraj Nosratti
Download PDF Download RIS Download Bibtex

Abstract

Mechanical, electronic, thermodynamic phase diagram and optical properties of the FeVSb half-Heusler have been studied based on the density functional theory (DFT) framework. Studies have shown that this structure in the MgAgAs-type phase has static and dynamic mechanical stability with high thermodynamic phase consistency. Electronic calculations showed that this compound is a p-type semiconductor with an indirect energy gap of 0.39 eV. This compound’s optical response occurs in the infrared, visible regions, and at higher energies its dielectric sign is negative. The Plasmon oscillations have occurred in 20 eV, and its refraction index shifts to zero in 18 eV.
Go to article

Authors and Affiliations

A. Bagheri
1
A. Boochani
2
S.R. Masharian
1
F.H. Jafarpour
3

  1. Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
  2. Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
  3. Physics Department, Bu-Ali Sina University, 65174-4161 Hamedan, Iran
Download PDF Download RIS Download Bibtex

Abstract

In order to evaluate morphological and physiological traits related to drought tolerance and to determine the best criteria for screening and identification of drought-tolerant genotypes, we grew two tolerant genotypes (MCC392, MCC877) and two sensitive genotypes (MCC68, MCC448) of chickpea under drought stress (25% field capacity) and control (100% field capacity) conditions and assessed the effect of drought stress on growth, water relations, photosynthesis, chlorophyll fluorescence and chlorophyll content in the seedling, early flowering and podding stages. Drought stress significantly decreased shoot dry weight, CO2 assimilation rate (A), transpiration rate (E), and Psii photochemical efficiency (Fv/Fm) in all genotypes. In the seedling and podding stages, Psii photochemical efficiency was higher in tolerant genotypes than in sensitive genotypes under drought stress. Water use efficiency (WUE) and CO2 assimilation rate were also higher in tolerant than in sensitive genotypes in all investigated stages under drought stress. Our results indicated that water use efficiency, A and Fv/Fm can be useful markers in studies of tolerance to drought stress and in screening adapted cultivars of chickpea under drought stress.

Go to article

Authors and Affiliations

Raheleh Rahbarian
Ramazanali Khavari-Nejad
Ali Ganjeali
Abdolreza Bagheri
Farzaneh Najafi

This page uses 'cookies'. Learn more