Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, a SYBR Green-based real-time quantitative polymerase chain reaction (qPCR) assay was developed for rapid detection of porcine parvovirus (PPV) 6. Primer pairs targeting the conserved regions of PPV6 Capsid gene were designed. Sensitivity analyses revealed the lowest detection limit of the SYBR Green-based real-time PCR assay to be 47.8 copies/μL, which indicated it was 1000 times higher than that found in the conventional PCR investigations. This assay was specific and showed no cross-species amplification with other six porcine viruses. The assay demonstrated high repeatability and reproducibility; the intra- and inter-assay coefficients of variation were 0.79% and 0.42%, respectively. The positive detection rates of 180 clinical samples with SYBR Green-based real-time PCR and conventional PCR were 12.22% (22/180) and 4.44% (8/180), respectively. Our method is sensitive, specific, and reproducible. The use of SYBR Green-based real-time PCR may be suitable for the clinical detection and epidemiological investigation of PPV6.

Go to article

Authors and Affiliations

P. Sun
C.X. Bai
D. Zhang
J. Wang
K.K. Yang
B.Z. Cheng
Y.D. Li
Y. Wang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, we developed a SYBR Green I real-time PCR method for the rapid and sensitive detection of novel porcine parvovirus 7 (PPV7). Specific primers were designed based on the highly conserved region within the Capsid gene of PPV7. The established method was 1,000 times more sensitive than the conventional PCR method and had a detection limit of 35.6 copies. This method was specific and had no cross-reactions with PCV2, PCV3, PRV, PEDV, PPV1, and PPV6. Experiments testing the intra and interassay precision demonstrated a high reproducibility. Testing the newly established method with 200 clinical samples revealed a detection rate up to 17.5% higher than that of the conventional PCR assay. The established method could provide technical support for clinical diagnosis and epidemiological investigation of PPV7.
Go to article

Authors and Affiliations

Y.D. Li
1
Z.D. Yu
2
C.X. Bai
2
D. Zhang
2
P. Sun
2
M.L Peng
2
H. Liu
3
ORCID: ORCID
J. Wang
4
Y. Wang
2
ORCID: ORCID

  1. Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China
  2. Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
  3. Anhui Animal Diseases Prevention and Control Center and Key Laboratory of Veterinary Pathobiology and Disease Prevention and Control of Anhui Province, Hefei 230091, PR China
  4. Animal Husbandry Base Teaching and Research Section, College of Animal Science and Technology, Hebei North University, Hebei 075000, PR China

This page uses 'cookies'. Learn more