Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents selected results of KOBO extrusion process of circular profile ϕ10 mm from aluminum alloy 2099. The main aim of the performed research was to determine the influence of the oscillation frequency of a die on the magnitude of extrusion force. During the process such parameters, as extrusion force, rate of stem and frequency of die oscillation were recorded; oscillating angle of a die was constant and equal ±8°. The die oscillation frequency was changeable in performed tests in the range of 2 ÷ 7 Hz. The obtained results allowed to determine the relation between the maximum extrusion force and the die oscillation frequency during extrusion of aluminum 2099 alloy.

The paper focuses on the experimental analysis of mechanical characteristics of the KOBO process. Basing on the recorded force versus stem position, three stages of KOBO extrusion process were determined, i.e. initialization, stabilization and uniform extrusion. Points separating these stages are two inflection points of recorded diagram. The analysis of each stage was made basing on the results of force diagrams and literature data.

Go to article

Authors and Affiliations

T. Balawender
ORCID: ORCID
M. Zwolak
ORCID: ORCID
Ł. Bąk
Download PDF Download RIS Download Bibtex

Abstract

The hydrogen embrittlement of metals is caused by the penetration and accumulation of hydrogen atoms inside the metal. The failure of the product due to hydrogen embrittlement is delayed in time and does not occur immediately after its manufacture, but several hours, days, or even weeks later. Therefore, the chances of detecting hydrogen embrittlement when checking the quality of the finished product are very slim. The use of high-strength bolts in industry is associated with the risk of hydrogen embrittlement. This phenomenon poses a threat to the safe use of devices by limiting or completely losing the functionality of the bolt joint. Even a low influence of moisture can trigger failure mechanisms.
The article proposes a method for assessing the risk of hydrogen embrittlement for high-strength bolts in class12.9. For this purpose, bolts made of material grade 32CrB4 were prepared and in a controlled manner the grain flow inconsistency was made, leading in extreme cases to the production of the forging lap. To perform the study, the device proposed by the European Assessment Document (EAD) was adapted to the testing of hydrogen embrittlement of threaded fasteners in concrete. The concrete substrate was replaced with metal spacers that were preloaded with a bolt. The use of the wedge distance under the bolt head led to the generation of two stress states – tensile and compressive, which translated into an increased risk of hydrogen embrittlement. After being tested, the bolts were visually and microscopically inspected to assess potential locations for cracks and hydrogen propagation. As a result of the conducted tests, it was found that the prepared test method allows to assess the resistance or susceptibility of the bolt to threats related to hydrogen embrittlement.
Go to article

Authors and Affiliations

T. Dubiel
1
ORCID: ORCID
T. Balawender
2
ORCID: ORCID
M. Osetek
1
ORCID: ORCID

  1. Koelner Rawlplug IP Sp. z o.o. Oddział w Łańcucie, Rzeszów University of Technology
  2. Rzeszów University of Technology, Departament of Materials Forming and Processing, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The use of cold forging is a widely used solution in many industries. One application is the manufacture of bolts and fasteners. The largest amounts of bolts are used in the automotive and machine industry. Those customers demand high standards of quality and reliability from producers based on ISO 9001 and IATF 16949. Also, the construction, agriculture and furniture industries are raising their expectations for deliveries from year to year.
Automotive companies issue their standards specifying specific requirements for products. One of these standards is the aviation standard SAE USCAR 8-4; 2019, which speaks of a compatible arrangement of fibers in the bolt head and in the area of transition into the mandrel.
The article presents the cold forging process of flange bolts. Obtaining a compatible, acceptable and incompatible grain flow pattern based of the above mantioned standard was presented. Then the results of FEM simulation were correlated with the performed experiment.
The effect of incompatible grain flow system was discussed and presented as the crack initiating factor due to delta ferrite, hydrogen embrittlement, tempering embrittlement. The reliability of the connections was confirmed in the assembly test for yield stress on a Schatz machine. The advantages of this method and the difference compared to the tensile test were presented.
Go to article

Bibliography

[1] IA TF 16949: 2016 – Automotive Quality Management System Standard.
[2] ISO 9001: 2015 – Systemy zarządzania jakością – Wymagania.
[3] A. Komornicka, M. Sąsiadek, T. Nahirny, Wyzwania przemysłu motoryzacyjnego w świetle wprowadzania standardów IATF 16949:2016, [in:] R. Knosali, Innowacje w Zarządzaniu i Inżynierii Produkcji, Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją.
[4] S. Ziółkiewicz, S. Stachowiak, D. Kaczmarczyk, A. Karpiuk, Obróbka Plastyczna Metali 17 (1), 7-13 (2006).
[5] A. Żmudzki, P. Skubisz, J. Sińczak, M. Pietrzyk, Obróbka Plastyczna Metali 17 (3), 9-19 (2006).
[6] N . Biba, S. Stebounov, A. Lishiny, J. Mater. Process. Tech. 113, 34-39 (2001).
[7] M Saad, S. Akhtar, M. Srivastava, J. Chaurasia, Materials Today: Proceedings 5, 19576-19585 (2018).
[8] A . Dubois, L. Lazzarotto, L. Dubar., J. Oudin, Wear 249, 951-961 (2002).
[9] Y . Nugraha, Theory of WireDrawing, Tirtayasa University (2007).
[10] S.Y. Hsia, Y.T. Chou, J.C. Chao, Advances in Mechanical Engineering 8 (3), 1-10 (2016).
[11] R . Bussoloti, L. Albano, L. de Canale, G.E. Totten, Delta Ferrite: Cracking of Steel Fasteners, [in:] R. Colás, G.E. Totten, Encyclopedia of Iron, Steel, and Their Alloys, Five-Volume Set, CRC Press (2006).
[12] D .H. Herring, Indust Heat 73 (16), 9 (2006).
[13] S.V. Brahimi, S. Yue, K.R. Sriraman, Philos. Trans. A Math. Phys. Eng. Sci. 375 (2098), (2017).
[14] SAE USCAR 8-4;2019 „Grain Flow Pattern for Bolts, Screws and Studs”.
[15] PN -EN 26157-3. Części złączne – Nieciągłości powierzchni – Śruby, wkręty i śruby dwustronne specjalnego stosowania.
[16] ISO 898-1:2013-06 Własności mechaniczne części złącznych wykonanych ze stali węglowej oraz stopowej – Część 1: Śruby i śruby dwustronne o określonych klasach własności – Gwint zwykły i drobnozwojny.
[17] ISO 16047:2007 Części złączne – Badanie zależności moment obrotowy/siła zacisku.
Go to article

Authors and Affiliations

T. Dubiel
1
ORCID: ORCID
T. Balawender
2
ORCID: ORCID
M. Osetek
1
ORCID: ORCID

  1. Koelner Rawlplug IP Sp. z o. o. Oddział w Łańcucie / Rzeszów University of Technology, Poland
  2. Rzeszów University of Technology, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more