Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Image processing techniques (band rationing, color composite, Principal Component Analyses)

are widely used by many researchers to describe various mines and minerals. The primary aim of

this study is to use remote sensing data to identify iron deposits and gossans located in Kaman,

Kırşehir region in the central part of Anatolia, Turkey. Capability of image processing techniques is

proved to be highly useful to detect iron and gossan zones. Landsat ETM+ was used to create remote

sensing images with the purpose of enhancing iron and gossan detection by applying ArcMap image

processing techniques. The methods used for mapping iron and gossan area are 3/1 band rationing,

3/5 : 1/3 : 5/7 color composite, third PC and PC4 : PC3 : PC2 as RG B which obtained result from

Standard Principal Component Analysis and third PC which obtained result from Developed Selected

Principal Component Analyses (Crosta Technique), respectively. Iron-rich or gossan zones were mapped

through classification technique applied to obtained images. Iron and gossan content maps were

designed as final products. These data were confirmed by field observations. It was observed that iron

rich and gossan zones could be detected through remote sensing techniques to a great extent. This

study shows that remote sensing techniques offer significant advantages to detect iron rich and gossan

zones. It is necessary to confirm the iron deposites and gossan zones that have been detected for the

time being through field observations.

Go to article

Authors and Affiliations

Zeynel Basibuyuk
Engin Ekdur
Download PDF Download RIS Download Bibtex

Abstract

Almus agates which are forms of nodules like egg-shaped are located in the Eocene aged Almus volcanics in Tokat (Turkey). These nodules are surprise eggs in spherical or oval form ranging from a few cm to 25–30 cm. It is thought that the most effective reason for the formation of the magnificent texture and color combinations of the agates in the region is the iron element. In thin section studies, agate formations are composed of length-slow zebraic chalcedony and quart zine. In addition, curved fossil like structures composed of iron oxide minerals offer visual richness.
The host rock in which the Almus agates are located is trachyte, which consists of sanidine, plagioclase microlites and small opaque minerals, in which microlithic porphyritic and flow (trachytic) texture are observed. As a result of the multipoint eds (field emission scanning electron microscope), it was determined that the quartz is composed of Si, O and Fe. The content of the iron element, which is thought to cause color, was observed in the range of ca 1–1.5 wt.%. According to XRF analysis results, in Almus agates, there is depletion of Fe2O3 content in fine crystalline regions (ca 1 wt.%) compared to coarse crystalline zones (ca 1.5 wt.%).
In order to determine the usability of Almus agates as gemstone, various cabochon shapes were made in Ümit Ulus Gemstone Processing workshop. It has been observed that these agates can be used for both collection and gemstone purposes due to their unique patterns and color compensation.
Go to article

Authors and Affiliations

Zeynel Başibüyük
1
ORCID: ORCID
Meltem Gürbüz
2
ORCID: ORCID
Ilkay Kaydu Akbudak
1
ORCID: ORCID

  1. Kırşehir Ahi Evran University, Faculty of Engineering and Architecture, Kirşehi̇, Turkey
  2. Mersin University, School of Technology and Design of Jewelry, Çiftlikköy, Mersi̇, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Ch-chalcedony is a green colored member of the quartz group of gem stones. The appearance of Ch-chalcedony is very similar to that of chrysoprase. Differently, Ch-chalsedonies have a chromium element instead of a nickel element as a trace element. Green quartz used in jewelery as a seal stone, in necklaces and rings and has been one of the most valuable quartz varieties throughout history, with its beautiful green color,more rare than other quartz varieties. The Ch-chalcedonies in the North Anatolian region is yellowish-white, brownish gray, light green to dark green in color ranging from several centimeters to one meter thick in veins and lenses in the Lower-Middle Eocene dolomitic limestones. Ch-chalcedonies are composed of fine-grained and occasionally fibrous needle-like quartz; in some examples, quartz is present together with cristobalite, tridimite and cuspidine minerals. According to geochemical investigations in Ch-chalcedonies, the main oxides that were determined are as follows: SiO2 was observed in the range of 95.86–97.81%, Fe2O3 was observed in the range of 0.61–0.91% and Cr2O3 was observed in the range of 0.125–0.168%. A trace element analysis of Ch-chalcedonies, shows their significant enrichments in: Ni, Mo, Cu, Mn, V, Cr and W, especially in the Cr (up to 705 ppm). The green color of the studied Cr-chalcedonies originates from the element chromium. Taking the possible reserves into account, the hardness, color, massive structures, mineralogical, petrographical and gemological features of Ch-chalcedonies in the region are evaluated together. It is determined that they are suitable for the production of jewelry and ornaments.

Go to article

Authors and Affiliations

Zeynel Başibüyük
ORCID: ORCID
Ilkay Kaydu Akbudak
ORCID: ORCID
Meltem Gürbüz
ORCID: ORCID

This page uses 'cookies'. Learn more