Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper there are presented some results obtained by open circuit potential and electrochemical impedance spectroscopy measurements from studies performed on the behavior of tribocorrosion on metallic implant biomaterials as: 304L stainless steel, Co/nano-CeO2 nanocomposite layer and Ti6Al4V untreated and oxidized alloy to form a nanoporous TiO2 film. The open circuit potential technique used in measuring the tribocorrosion process provide information on the active or passive behavior of the investigated metallic biomaterial in the biological fluid, before, during friction and after stopping the friction. Thus it clearly show a better behavior of Co/nano-CeO2 nanocomposite coatings as compared with 304L stainless steel to tribocorrosion degradation in Hank solution; as well the better behavior of nanoporous TiO2 film formed annodically on Ti6Al4V alloy surface as compared with untreated alloy to tribocorrosion degradation in artificial saliva Fusayama Meyer. The slight decrease in polarization resistance value resulted from electrochemical impedance spectroscopy measured during friction in the case of the Co/nano-CeO2 nanocomposite layer (four times smaller), compared to 304L stainless steel, whose polarization resistance decreased more than 1000 times during friction shows the higher sensitivity of stainless steel to degradation by tribocorrosion. The same behavior is observed when comparing the polarization resistance of untreated titanium alloy recorded during friction that is about 200 hundred times smaller, while the specific polarization resistance of the oxidized alloy with the nanoporous film of titanium oxide, decreases very little during friction, highlighting the beneficial effect of modifying the titanium alloy by anodic oxidation to increase its resistance to the degradation process by tribocorrosion.
Go to article

Authors and Affiliations

L. Benea
1
ORCID: ORCID

  1. Dunarea de Jos University of Galati, Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to study the corrosion behavior of Nickel – Base – Dental Alloys in Ringer biological fluid. The Nickel base alloys are widely used for medical purposes, especially for prosthetic works in the field of dentistry. The applied electrochemical methods used for corrosion investigations are Open Circuit Potential, Linear Polarization during time of immersion in order to calculate the polarization resistance and corrosion rate. Potentiodynamic Polarization diagrams was performed to appreciate the passive domain. Ni-Cr Ugirex alloy show a better corrosion resistance in Ringer solution which will be reflected in a longer life of the dental structures made with this alloy as compared to the Ni-Cr Ducinox alloy, which will result in dental structures with a shorter lifespan.
The electrochemical studies has shown that the alloy have a corrosion behavior similar to a passivating alloy, displaying an extensive passivity area due to formation of an oxide film.
Go to article

Authors and Affiliations

L. Benea
1
ORCID: ORCID
L. Dragus
1 2
D. Mocanu
1

  1. Dunarea de Jos University of Galati, Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
  2. Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, 35 Alexandru. I. Cuza Street., RO-800010, Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

Now, the use of any medical device based on metals or alloys, especially intended for dentistry applications, is impossible without preclinical evaluation of its anticorrosion properties. Today, the use of stainless steels with AISI standardization, with predilection 316L and 321, are preferred for ergonomic reasons due to their high operational reliability and optimal mechanical properties for functionality over time. In this regard, 316L and 321 stainless steels are tested for comparison in the solution that simulates human saliva with different pH. Stainless steel samples were subjected to corrosion in Fusayama-Meyer and Carter-Brugirard saliva. In-situ electrochemical measurements were applied, such as the open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). The results show that the corrosion resistance of 316L is superior to 321 in saliva solution at both pH values.
Go to article

Authors and Affiliations

V. Neaga
1
L. Benea
1
ORCID: ORCID

  1. Competences Centre: Interfaces-Tribocorrosion and Electrochemical Systems (CC-ITES), Dunarea de Jos University of Galati, 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

This research paper aims to study the influence of some of the main parameters applied to the electrodeposition process on the nanocomposite layers obtained by strengthening the cobalt matrix with cerium oxide nanoparticles. Thus, the current efficiency (process efficiency) and the degree of inclusion of cerium oxide nanoparticles into cobalt matrix are analyzed according to the current density, the concentration of nanoparticles dispersed in the deposition electrolyte and time of the process. The choice of the optimal parameters imposed on the electrodeposition process lead to the improvement of the quality of the obtained layers, to the reduction of production costs and last but not least to the improvement of corrosion and tribocorrosion resistance of the material. The obtained results show an increase of current efficiency in the process of the deposited layers with the increase of time and current density applied. There is also a slight increasing in the current efficiency of the obtained layers with the increase of the concentration of nanoparticles dispersed in the deposition electrolyte. The increase of the current density, time and the concentration of nanoparticles also have an effect on the degree of embedded CeO2 nanoparticles into cobalt matrix for the studied nanocomposite layers. The degree of inclusion of nanoparticles decreases for the same studied system with the increasing of the current density.
Go to article

Authors and Affiliations

N. Simionescu-Bogatu
1
ORCID: ORCID
L. Benea
2
ORCID: ORCID

  1. Dunarea de Jos University of Galati, Faculty of Engineering, Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
  2. Dunarea de Jos University of Galati, Faculty of Engineering, Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems (CC-ITES),47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

Production of Ti-based alloys with non-toxic elements give the possibility to control the market of medical applications, using alloys with appropriate properties for human body, contributing to improving the health of the population. Determination of parameters of atomic and magnetic structure of functional biomaterials demonstrating interesting physical phenomena and being promising for medical applications in a wide range of thermodynamic parameters; exploration of the role of cluster aggregation in the formation of physical properties. Paper is about the obtaining of the new titanium system alloys, the determining their characteristics and structure, and obtaining information concerning phase transitions and some mechanical properties. Ti15Mo7ZrxTa (5 wt.%, 10 wt.% and 15 wt.%) alloys developed shows a predominant β phase highlighted by optical microstructure and XRD patterns. A very low young modulus of alloys was obtained (43-51 GPa) which recommends them as very good alloys for orthopedic applications.
Go to article

Authors and Affiliations

I. Baltatu
1
ORCID: ORCID
A.V. Sandu
1 2 3
ORCID: ORCID
M.S. Baltatu
1 2
ORCID: ORCID
M. Benchea
4
ORCID: ORCID
D.C. Achitei
1 2
ORCID: ORCID
F. Ciolacu
5
ORCID: ORCID
M.C. Perju
1 2
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
L. Benea
6
ORCID: ORCID

  1. “Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, 41 “D. Mangeron” Street, 700050, Iasi, Romania
  2. University Malaysia Perlis, Centre of Excellence Geopolymer & Green Technology School of Materials Engineering, Kompleks Pengajian Jejawi 2,02600 Arau, Perlis
  3. Romanian Inventors Forum, Str. Sf. P. Movila 3, L11, 700089, Iasi, Romania
  4. “Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, 61-63 “D. Mangeron” Street, 700050, Iasi, Romania
  5. “Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, 73 Blvd. D. Mangeron, Iasi, 700050, Romania
  6. Dunărea de Jos University of Galati, Faculty of Engineering, 47 Domneasca St., 800008, Galati, Romania

This page uses 'cookies'. Learn more