Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present work focuses on the modeling and analysis of mechanical properties of structural steel. The effect of major alloying elements

namely carbon, manganese and silicon has been investigated on mechanical properties of structural steel. Design of experiments is used to

develop linear models for the responses namely Yield strength, Ultimate tensile strength and Elongation. The experiments have been

conducted as per the full factorial design where all process variables are set at two levels. The main effect plots showed that the alloying

elements Manganese and Silicon have positive contribution on Ultimate tensile strength and Yield strength. However, Carbon and

Manganese showed more contribution as compared to Silicon. All three alloying elements are found to have negative contribution

towards the response- Elongation. The present work is found to be useful to control the mechanical properties of structural steel by varying

the major alloying elements. Minitab software has been used for statistical analysis. The linear regression models have been tested for the

statistical adequacy by utilizing ANOVA and statistical significance test. Further, the prediction capability of the developed models is

tested with the help of test cases. It is found that all linear regression models are found to be statistically adequate with good prediction

capability. The work is useful to foundrymen to choose alloying elements composition to get desirable mechanical properties.

Go to article

Authors and Affiliations

A. Bhatt
M.B. Parappagoudar
Download PDF Download RIS Download Bibtex

Abstract

Shear walls are the most commonly used lateral load resisting systems in high rises. They have high plane stiffness and strength which can be used to simultaneously resist large horizontal loads while also supporting gravity loads. Hence it is necessary to determine effective and ideal locations of shear walls. Shear wall arrangement must be absolutely accurate, if not, it may cause negative effects instead. In this project, a study has been carried out to determine the effects of additions of shear walls and also the optimum structural configuration of multistory buildings by changing the shear wall locations radically. Four different cases of shear wall positions for G+10 storey buildings have been analyzed by computer application software ETABS. The framed structure was subjected to lateral and gravity loading in accordance with the Indian Standards provision and the results were analyzed to determine the optimum positioning of the shear walls.

Go to article

Authors and Affiliations

A. Titiksh
G. Bhatt
Download PDF Download RIS Download Bibtex

Abstract

Data security is one of the prime concerns in wireless networks. PLKG has been emerging as an attractive alternative to traditional cryptographic techniques. PLKG is more computationally efficient than cryptography. Moreover, PLKG using Principal component analysis (PCA) as pre-processing may further save computations. This paper proposes three mechanisms to select components of PCA which are based on Information content, Mean and Histfit. Bit Disagreement Rate (BDR) is compared for each mechanism. Histfit based method is found to be best. Since only two components are supposed to be processed for key generation, it is computationally efficient/ power efficient too.
Go to article

Authors and Affiliations

Tapesh Sarsodia
1
Uma Rathore Bhatt
1
Raksha Upadhyay
1
Vijay Bhat
2

  1. Institute of Engineering and Technology, Devi Ahilya University, Indore, India
  2. Sage University, Indore, Madhya Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

Transparent Conductive Electrode (TCE) is an essential part of the optoelectronic and display devices such as Liquid Crystal Displays (LCDs), Solar Cells, Light Emitting Diodes (LEDs), Organic Light Emitting Diodes (OLEDs) and touch screens. Indium Tin Oxide (ITO) is a commonly used TCE in these devices because of its high transparency and low sheet resistance. However, scarcity of indium and brittle nature of ITO limit its use in future flexible electronics. In order to develop flexible optoelectronic devices with improved performance, there is a requirement of replacing the ITO with a better alternate TCE. In this work, several alternative TCEs including transparent conductive oxides, carbon nanotubes, conducting polymers, metal nanowires, graphene and composites of these materials are studied with their properties such as sheet resistance, transparency and flexibility. The advantage and current challenges of these materials are also presented in this work.

Go to article

Authors and Affiliations

S. Sharma
S. Shriwastava
S. Kumar
K. Bhatt
C. Charu Tripathi

This page uses 'cookies'. Learn more