Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Culture gas atmosphere is one of the most important factors affecting embryo development in vitro. The main objective of this study was to compare the effects of CO concentration on the subsequent pre-implantation developmental capacity of pig embryos in vitro, including embryos obtained via parthenogenesis, in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). Pig embryos were developed in four different CO2 concentrations in air: 3%, 5%, 10%, or 15%. The cleavage rate of pig parthenogenetic, IVF, or ICSI embryos developed in CO2 concen- trations under 5% was the highest. There were no significant differences in the oocyte cleavage rate in ICSI embryos in CO2 concentrations under 3% and 5% (p>0.05). However, as CO2 levels increased (up to 15%) the blastocyst output on day 7, from parthenogenetic, IVF, and ICSI em- bryos, decreased to 0%. These findings demonstrate that CO2 positively affects the developmen- tal capacity of pig embryos. However, high or low CO2 levels do not significantly improve the developmental capacity of pig embryos. The best results were obtained for all of the pig embryos at a 5% CO2 concentration.

Go to article

Authors and Affiliations

L. Zhang
Z. Lin
Y. Bi
X. Zheng
H. Xiao
Z. Hua
Download PDF Download RIS Download Bibtex

Abstract

Feeder cells can promote cell proliferation and help overcome the developmental arrest of early embryos by producing growth factors. The objective of this study was to evaluate the effects of feeder cells on the development of all single porcine parthenogenetic embryos in vitro. Firstly, we showed that the cleavage and blastocyst formation rate of all single procine parthenogenetic embryos co-cultured with feeder cells increased in contrast to those cultured without feeder cells (p<0.05). However, no statistically significant differences were observed between the blastocyst formation rate in the embryos co-cultured with 3 different kinds feeder cells namely oviduct epithelial feeder cells, granulose feeder cells and porcine fetal fibroblast feeder cells (p>0.05). Secondly, highly significant differences were observed between the cleavage and blastocyst formation rate (p<0.05) when the embryos were co-cultured with oviduct epithelial feeder cells in different volume drops ranging from 3 to 20 μL and the cleavage rate were the highest when cultured in 5 μL drops. Thirdly, the tempospacial pattern of the development of single embryos co-cultured with oviduct epithelial feeder cells was consistent with that of traditional multi-embryo culture, indicating that the co-culturing does not affect the developmental competence of the porcine parthenogenetic embryos. Finally, highly significant differences were observed between the cleavage and blastocyst formation rate with and without zona pellucida in vitro (p<0.05). In this study, a new adaption of in vitro co-culture of single porcine parthenogenetic embryos using feeder cells has been successfully established and this will facilitate further investigations to discover the mechanistic mode of developmental arrest of porcine embryos.

Go to article

Authors and Affiliations

L. Zhang
Z. Lin
Z. Hua
X. Zheng
H. Xiao
W. Hua
H. Ren
Z. Zhu
A. Molenaar
Y. Bi

This page uses 'cookies'. Learn more