Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of research into the characteristics of cast steel alloyed with chromium and vanadium, subjected to heat treatment for increased strength parameters. In the first part, it discusses the state-of-the-art knowledge regarding technological developments in the field of cast-steel alloys and the influence of individual alloying additives on the microstructure and the properties of the steel alloy. Further sections present the results of microstructure observations performed with light microscopy, scanning electron microscopy, and transmission electron microscopy. This research focuses on the material in the state directly after casting and after heat treatment, which involved quenching and tempering at 200 °C. The microstructural analysis performed as part of this research has informed the discussion of the results obtained from tensile and impact strength tests. The article also includes the results of a fractography analysis performed as the final part of the tests and offers a general summary and conclusions.
Go to article

Bibliography

[1] Bartocha, D., Kilarski, J., Suchoń, J., Baron, C., Szajnar, J. & Janerka, K. (2011). Low-alloy constructional cast steel. Archives of Foundry Engineering. 11(spec.3), 265-271. ISSN (1897-3310). (in Polish).
[2] Skołek, E., Szwejkowska, K., Chmielarz, K., Świątnicki, W. A., Myszka, D. & Wieczorek, A.N. (2022). The microstructure of cast steel subjected to austempering and B-Q&P heat treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 53(7), 2544-2560. https://doi.org/10.1007/s11661-022-06685-3.
[3] Kniaginin, G. (1977). Cast steel: Metallurgy and foundry. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[4] Sobula, S., Tęcza, G., Krasa, O. & Wajda, W. (2013). Grain refinement of low alloy Cr-Mn-Si-Ni-Mo cast steel with boron, titanium and rare elements additions. Archives of Foundry Engineering. 13(3) 153-156. ISSN (1897-3310). (in Polish).
[5] Gajewski, M. & Kasińska, J. (2012). Effects of Cr - Ni 18/9 austenitic cast steel modification by mischmetal. Archives of Foundry Engineering. 12(spec.4), 47-52. DOI: 10.2478/v10266-012-0105-y.
[6] Lazarova, R., Petrov, R.H., Gaydarova, V., Davidkov, A., Alexeev, A., Manchev, M. & Manolov, V. (2011). Microstructure and mechanical properties of P265GH cast steel after modification with TiCN particles. Materials & Design. 32(5), 2734-2741. DOI: 10.1016/J.MATDES.2011.01.024.
[7] Yang, S.Z. (2010). Vanadium Metallurgy. Beijing: Metallurgical Industry Press.
[8] Dobrzański, L.A. (2002). Fundamentals of materials science and metal science. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[9] Baoxiang, Y., Jinyong, H., Guifang, Z. & Jike, G. (2021). Applications of vanadium in the steel industry. Vanadium. 267-332. DOI: 10.1016/B978-0-12-818898-9.00011-5.
[10] Panin, S.V., Maruschak, P.O., Vlasov, I.V., Syromyatnikova, A.S., Bolshakov, A.M., Berto, F., Prentkovskis, O. & Ovechkin, B.B. (2017). Effect of operating degradation in arctic conditions on physical and mechanical properties of 09Mn2Si pipeline steel. Procedia Engineering. 178, 597-603. https://doi.org/10.1016/j.proeng.2017.01.117.
[11] Wyrzykowski, J.W., Pleszakow, E. & Sieniawski, J. (1999). Deformation and cracking of metals. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[12] Kocańda, S. (1972). Fatigue destruction of metals. Warszawa: Wydawnictwo: Naukowo-Techniczne. (in Polish).
[13] Maciejny, A. (1973). Brittleness of metals. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[14] Kalandyk, B. & Zapała, R. (2008). Effect of heat treatment parameters on the properties of low-alloy cast steel with microadditions of vanadium. Archives of Foundry Engineering. 8(3), 137-140. ISSN(1897-3310).
[15] Kalandyk, B., Sierant, Z. & Sobula, S. (2009). Optimisation of microstructure, yield and impact strength of carbon cast steel by vanadium additions. Przegląd Odlewnictwa. 59(3), 108-113. (in Polish).
[16] Kalandyk, B. & Głownia, J. (2003). Influence of V and Mo and heat treatment of constructional Mn–Ni cast steels acquirement of yield strength above 850MPa. Archiwum Odlewnictwa. 3(8), 69-74. (in Polish). ISSN 1642-5308.
[17] Szajnar, J., Studnicki, A., Głownia, J., Kondracki, M., Suchoń, J. & Wróbel, T. (2013). Technological aspects of low-alloyed cast steel massive casting manufacturing. Archives of Foundry Engineering. 13(4), 97-102. ISSN (1897-3310).
[18] Sobula, S., Rąpała, M., Tęcza, G., & Głownia, J. (2009). Cast steels of a yield strength above 1300 MPa comparable to forgings. Przegląd Odlewnictwa. 59(3), 102-106. (in Polish).

Go to article

Authors and Affiliations

B. Białobrzeska
1
ORCID: ORCID

  1. Wrocław University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research was to examine the influence of boron on the selected properties of low-alloy cast steels. The chemical compositions of the cast steels were designed especially for this study to contain different alloy elements. The first composition lacked significant alloying elements. The subsequent grades of cast steels had the addition of chrome, chrome with vanadium, and chrome with titanium. It was decided to investigate the influence of boron in the presence of such alloying additives on the temperature of phase transformations. On the basis of dilatometric curves, the characteristic temperatures of the phase transformations were determined. Additionally, to assess the influence of the cooling rate on the structure of cast steels, an analysis of their microstructure, after full annealing and quenching, was carried out.
Go to article

Authors and Affiliations

B. Białobrzeska
1
ORCID: ORCID
R. Dziurka
2
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Department of Vehicle Engineering, Smoluchowskiego Str. 25, 50-370 Wroclaw, Poland
  2. University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Sciences, Al. A. Mickiewicza 30, 30-059 Krakow, Poland

This page uses 'cookies'. Learn more