Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Traditional press and sinter processes have gained in the last decades more and more importance in the manufacturing of high volume and precise mechanical components especially in the field of iron based powders. In recent years, the reductions of processing times and temperatures were spotted as critical targets to increase productivity and reduce energy consumption. Electric current assisted sintering (ECAS) technologies have always been seen as an alternative to traditional furnace based sintering techniques and have been the target of different researches with the specific purpose of reducing both operational times and costs. The aim of the present study is to investigate the effect of an innovative process called Electro Sinter Forging (ESF) applied to CuSn15 powders. Thanks to a very short processing time (less than 1 second to densify loose powders), this process is able to retain a very small grain size, thus enhancing mechanical properties of the processed materials. Furthermore, to the authors knowledge, cold – rolled electro – sinter – forged alloys has never been investigated before. First of all, bars were electro – sinter – forged and subsequently characterized in the as sinter – forged condition. The observation of microstructure evidenced an extremely fine microstructure and a reduced degree of porosity. Afterwards, bars were cold rolled after different reduction ratios; macrostructural integrity of the rolled bars was assessed before evaluating the effects of cold rolling on the sinter – forged microstructure.

Go to article

Authors and Affiliations

F.S. Gobber
J. Bidulská
ORCID: ORCID
A. Fais
F. Franchini
R. Bidulský
ORCID: ORCID
T. Kvačkaj
M. Actis Grande
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the present paper is to evaluate the porosity and mechanical properties of Ti6Al4V and CoCrW alloys produced by Laser Powder Bed Fusion (L-PBF) as an additive manufacturing (AM) technology. Ti6Al4V and CoCrW alloys are attractive for medical application. The complex examination of porosity for these alloys needs the quantification of morphological and dimensional characteristics. Quantification of porosity was realized on non-etched samples. Quantitative image analysis was used to describe the dimensional and morphological porosity characteristics. The pores were evaluated by Image pro plus software. The results show the significant inhomogeneity of the morphology and distribution, as well as the pore size in the investigated materials and underline the importance of pore structure for the controlling mechanism of the mechanical response.
Go to article

Authors and Affiliations

R. Bidulský
1 2
ORCID: ORCID
P. Petroušek
3
ORCID: ORCID
J. Bidulská
3
ORCID: ORCID
R. Hudák
4
ORCID: ORCID
J. Živčák
4
ORCID: ORCID
M. Actis Grande
1
ORCID: ORCID

  1. Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
  2. Asian Innovation Hub, Budulov 174, 045 01 Moldava Nad Bodvou, Slovakia
  3. Technical University of Kosice, Faculty of Materials , Metallurgy and Recycling, Dpt. of Plastic Deformation and Process Simulation, Letná 9, 042 00 Kosice, Slovakia
  4. Technical University of Kosice, Faculty of Mechanical Engineering, Dpt . of Instrumental and Biomedical Engineering, Letná 9, 042 00 Kosice, Slovakia

This page uses 'cookies'. Learn more