Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Modern control and measurement systems are equipped with interfaces to operate in local area networks and are typically intended to perform complicated data processing and control algorithms. The authors propose a digital system for rapid prototyping of target application devices. The concept solution separates the processing and control section from the hardware interface and user interface section. Both sections constitute independent ARM-based controllers interconnected via a direct USB link. Popular libraries can be used and low-level procedures developed, which enhances the system’s economic viability. A test unit developed for the purpose of the study was built around a SoC ARM7 microsystem and an off-the-shelf palmtop device. It demonstrated a continuous data stream transfer capability up to 150 kB per second, which was sufficient to monitor the performance of an electricity line.

Go to article

Authors and Affiliations

Jacek Augustyn
Andrzej Bień
Download PDF Download RIS Download Bibtex

Abstract

Growing popularity of distributed generation is drawing special attention to communication technologies in smart power grids. This paper provides a detailed overview of the communication protocols utilized in the modern distributed grid laboratory. It describes both wired and wireless technologies used in Smart Grid and presents the remote operation of switching the subsystem from grid mode to island mode operating under nominal conditions. It shows the duration of power outages during a transfer to island mode with diesel generator running on idle - which simulates planned islanding and diesel generator stationary, which simulates unplanned islanding. Latency between registration of disturbance and executing control command is measured. The results obtained are compared with current legislation. The consequences to the power system that are possible in both scenarios are highlighted. Obtained results and description of the communication technologies can be useful for the design of distributed power grids, island-mode power grids, and Smart Grids, as well as for further research in the area of using combustion fuel generators as a primary power supply in the microgrid.
Go to article

Authors and Affiliations

Kamil Prokop
1
Andrzej Bień
1
Szymon Barczentewicz
1

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Power quality (PQ) monitoring is important for both the utilities and also the users of electric power. The most widespread measurement instrument used for PQ monitoring is the PQM (Power Quality Monitor) or PQA (Power Quality Analyzer). In this paper we propose the usage of PMU data for PQ parameters monitoring. We present a new methodology of PQ parameters monitoring and classification based on PMU data. The proposed methodology is tested with real measurements performed in distribution system using dedicated PMU system.

Go to article

Authors and Affiliations

Szymon H. Barczentewicz
Andrzej Bień
Krzysztof Duda
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the propagation assessment and power quality parameters improvement system in power distribution grid. In this work main functionalities of the system are described focusing on the individual assessment module. The module is using CIRED/CIGRE C4.109 method which is based on the 10-minutes aggregated data. Three cases of individual emission assessment using real measurement data in the distribution system operator environment ware analyzed. The obtained results confirmed the legitimacy of using 10-minute data to assess the emissions of harmonics.
Go to article

Authors and Affiliations

Szymon Barczentewicz
1
Tomasz Rodziewicz
2
Andrzej Bień
1
Andrzej Firlit
1

  1. AGH University of Science and Technology, Poland
  2. TAURON Dystrybucja S.A., Poland
Download PDF Download RIS Download Bibtex

Abstract

Unintentional islanding detection is one the mandatory criterion that must be met by PV inverters before connecting them into the grid. Acceptable time for inverter for islanding detection is less than 2 seconds. In this paper voltage parameters after islanding occurrence and before turning off the inverter are analyzed. In order to simulate islanding state and perform measurements the testing system was build. Three different commercial PV inverters were tested. Measured signals were used to calculate voltage envelope, phasor, frequency and ROCOF. Collected data proved to be helpful to compere different inverters.
Go to article

Bibliography

[1] S. Barczentewicz, A Bień, K. Duda , „The use of PMU data for detecting and monitoring selected electromagnetic disturbances”, International Journal od Electronics and Telecommunication. 2020, https://doi.org/10.24425/ijet.2020.134040
[2] IEEE Standard for Synchrophasor Measurements for Power Systems—Amendment 1: Modification of Selected Performance Requirements, IEEE Standard C37.118.1a, Apr. 2014.
[3] International Standard Synchrophasor for power systems – Measurements, IEC/IEEE 60255-118-1, Edition 1.0, Dec. 2018.
[4] G. A. Dileep, “Survey on smart grid technologies and applications”, Renewable Energy, vol. 146, pp. 2589-2625, 2020, https://doi.org/10.1016/j.renene.2019.08.092
[5] S. Barczentewicz, T. Lerch, A. Bień, K. Duda, “Laboratory Evaluation of a Phasor-Based Islanding Detection Method”. Energies. 2021; 14(7):1953. https://doi.org/10.3390/en14071953
[6] IEEE 15471-2020 „Standard Conformance Test Procedures for Equipment Interconnecting Distributed Energy Resources with Electric Power Systems and Associated Interfaces”
[7] S. Raza, H. Arof, H. Mokhlis, H. Mohamad, H. Azil Illias, “Passive islanding detection technique for synchronous generators based on performance ranking of different passive parameters”. IET Gener. Transm. Distrib. 2017, 11, 4175–4183, https://doi.org/10.1049/iet-gtd.2016.0806
[8] Z. Lin, T. Xia, Y. Ye, Y. Zhang, L. Chen, Y. Liu, K. Tomsovic, T. Bilke, F. Wen, “Application of wide area measurement systems to islanding detection of bulk power systems.” IEEE Trans. Power Syst. 2013, 28, 2006–2015, https://doi.org/10.1109/TPWRS.2013.2250531
[9] S.I. Jang, K.H. Kim, “An islanding detection method for distributed generations using voltage unbalance and total harminic distrotion of current.” IEEE Trans. Power Deliv. 2004, 19, 745–752, https://doi.org/10.1109/TPWRD.2003.822964
[10] R. Teodorescu, M. Liserre, P. Rodriguez, “Grid Converters for Photovoltaic and Wind Power System” John Wiley & Sons, Ltd: Chichester, West Sussex, UK; 2011; pp. 93–96
[11] S. Murugesan, M. Venkatakirthiga, “Active Unintentional Islanding Detection Method for Multiple PMSG based DGs.” IEEE Trans. Ind. Appl. 2020, 56, 4700–4708, https://doi.org/10.1109/TIA.2020.3001504
[12] S. Murugesan, V. Murali, “Hybrid Analyzing Technique Based Active Islanding Detection for Multiple DGs.” IEEE Trans. Ind. Inform. 2019, 15, 1311–1320, https://doi.org/10.1109/TII.2018.2846025
[13] D. Sivadas, K. Vasudevan, “An Active Islanding Detection Strategy with Zero Non detection Zone for Operation in Single and Multiple Inverter Mode Using GPS Synchronized Pattern.” IEEE Trans. Ind. Electron. 2020, 67, 5554–5564, https://doi.org/10.1109/TIE.2019.2931231
[14] M. Ropp, E. Aaker, K. Haigh, J. Sabbah, “Using power line carrier communication to prevent islanding”. IEEE Photovolt. Spec. Conf. 2002, 1675–1678, https://doi.org/10.1109/PVSC.2000.916224
[15] X. Wilson, Z. Guibin, L. Chun, W. Wencong, W. Guangzhu, K. A Jacek, “Power line signaling based technique for anti-islanding protection of distributed generators-Part I: Sheme and analysis.”, IEEE Trans. Power Deliv. 2007, 22, 1758–1766, https://doi.org/10.1109/TPWRD.2007.899618
[16] Z. Ye, R. Walling, L. Garces, R. Zhou, L. Li, T. Wang, “Study and Development of Anti-Islanding Control. for Grid-Connected Inverters”; Nat. Renew. Energy Lab.: Golden, CO, USA, May 2004, NREL/ SR-560-36243.
[17] S. Katyara, A. Hashmani, B.S. Chowdhary, H.B. Musavi, A. Aleem, F.A. Chachar, M.A. Shah, “Wireless Networks for Voltage Stability Analysis and Anti-islanding Protection of Smart Grid System.” Wirel. Pers. Commun. 2020, 1–18, https://doi.org/10.1007/s11277-020-07432-w
[18] K. Duda, T.P. Zieliński, S. Barczentewicz, “Perfectly Flat-Top and Equiripple Flat-Top Cosine Windows”, IEEE Trans. Instrum. Meas. 2016, 65, 1558–1567, https://doi.org/10.1109/TIM.2016.2534398
[19] K. Duda, T.P. Zieliński, “FIR Filters Compliant with the IEEE Standard for M Class PMU”. Metrol. Meas. Syst. 2016, 23, 623–636, https://doi.org/10.1515/mms-2016-0055

Go to article

Authors and Affiliations

Szymon Henryk Barczentewicz
1
Tomasz Lerch
1
ORCID: ORCID
Andrzej Bień
1

  1. AGH University of Science and Technology, Poland

This page uses 'cookies'. Learn more