Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Escalating quantity of industrial by-products generated, including oil palm shell (OPS) and palm oil fuel ash (POFA ) of the palm oil industries, has been a concern to many analysts. They are mostly disposed off as wastes that would heavily impact the environment quality. Therefore, this paper aimed to investigate the possibility of consuming these wastes by using OPS and POFA as replacement materials for fine aggregates in the concrete mixture. The mixtures were prepared by integrating unground palm oil fuel ash of 0%, 10%, and 20% (by weight of sand) to produce lightweight concrete. The experiments observed the mechanical performance of these specimens for 180 curing days. The results show the enhancement of concrete strength relative to the control mixture by using 10% of ash. This is owing to void filling mechanism and product of pozzolanic reaction due to the fine particles of the ash.
Go to article

Authors and Affiliations

H. Mohd Hanafi
1
ORCID: ORCID
Khairunisa Muthusamy
2
ORCID: ORCID
W.A. Saffuan
2
ORCID: ORCID
A.M.A. Budiea
3
ORCID: ORCID
A. Kusbiantoro
4
ORCID: ORCID
M. Nabilla
2
ORCID: ORCID
A.R. Rafiza
5
ORCID: ORCID
K. Błoch
6
ORCID: ORCID

  1. Kolej Komuniti Pekan, Jalan-Pekan-Kuantan, Kampung Batu Satu Peramu, Pekan, Pahang
  2. Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, Gambang, Pahang
  3. Universiti Malaysia Pahang, Faculty of Industrial Management, Gambang, Pahang
  4. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  5. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEG eoGT ech), 01000 Perlis, Malaysia
  6. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland

This page uses 'cookies'. Learn more