Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The development of the crystallographic texture in copper subjected to severe plastic deformation (SPD) by means of high pressure torsion (HPT) and equal-channel angular pressing (ECAP) was experimentally investigated and analyzed by means of computer modelling. It was demonstrated, that the texture developed in HPT and ECAP Cu is characterized by significant inhomogeneity. Therefore, the analysis focused on the study of the texture distribution and its inhomogeneity in sample space. The detailed texture analysis, based on the X-ray diffraction technique, led to important observations concerning the localization of the maximum texture gradient and the regularity of its changes related to the parameters of the applied deformation. The obtained results provided the basis for certain conclusions concerning complex texture changes in SPD Cu.

Go to article

Authors and Affiliations

I.V. Alexandrow
M.V. Zhilina
J.T. Bonarski
Download PDF Download RIS Download Bibtex

Abstract

Biocompatible coatings produced on the basis of the chemically extracted natural hydroxyapatite (HAp) from the animal bones were deposited using multiplex method comprising glow discharge nitriding (GDN) of the titanium alloy substrate and pulsed laser deposition (PLD) of HAp on the formerly fabricated titanium nitride layer (TiN). The TiN interlayer plays an important role improving adhesion of HAp to substrate and preserves the direct contact of the tissue with metallic substrate in the case of possible cracking of HAp coating. Surface morphology of deposited layers, crystallographic texture and residual stress were studied in relation to the type of laser applied to ablation (Nd:YAG or ArF excimer), laser repetition, temperature of substrate and atmosphere in the reactive chamber.

Go to article

Authors and Affiliations

B. Major
T. Wierzchoń
W. Mróz
K. Haberko
R. Ebner
J. Bonarski
R. Major
A. Prokopiuk
Download PDF Download RIS Download Bibtex

Abstract

Pulsed laser deposition technique was applied for covering elastic cast-polyurethane membranes with titanium nitride and boron nitride layers. The deposition process was realized using a Nd:YAG laser with Qswitch in stages; firstly the membranes were coated with ultra-thin titanium nitride layer (TixN) by evaporation of a metallic titanium disk in nitrogen gas atmosphere and then a layer of boron nitride (BN) was deposited by ablation of hexagonal h-BN target in argon atmosphere. The surface morphology was observed by scanning electron microscopy. Chemical composition was analyzed by energy dispersive X-ray spectrometry. The phase analysis was performed by means of grazing incidence X-ray diffraction and attenuated total reflection infrared spectroscopy. The crystallographic texture was measured. The wear test was performed by pin-on-disk method. Hexagonal boron nitride layers with (0001)[uvtw] texture with flake-like grains were fabricated. The structure and texture of boron nitride was identical irrespectively of substrate roughness or BN thickness. Pin-on-disk wear tests showed that the coatings effectively decreased the friction coefficient from two to even four times comparing to pure polyurethane and polyurethane covered with graphite. This proved that deposited layers can replace graphite as a lubricating material used to protect polymer surfaces.

Go to article

Authors and Affiliations

R. Kosydar
J.T. Bonarski
M. Kot
S. Zimowski
M. Ferraris
M. Salvo
B. Major

This page uses 'cookies'. Learn more