Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article comprises synthesis of magnetically susceptible carbon sorbents based on bio raw materials – beet pulp. The synthesis was performed by one- and two-step methodology using FeCl3 as an activating agent. X-ray diffraction methods showed an increase in the distance between graphene layers to 3.7 Å in biocarbon synthesized by a two-step tech-nique and a slight decrease in inter-graphene distance to 3.55 Å for biocarbon synthesized by an one-step technique. In both magnetically susceptible samples, the Fe3O4 magnetite phase was identified. Biocarbon synthesized by a two-step technique is characterized by a microporous structure in which a significant volume fraction (about 35%) is made by pores of 2.2 and 5 nm radius. In the sample after a one-step synthesis, a significant increase in the fraction of pores with radii from 5 to 30 nm and a decrease in the proportion of pores with radii greater than 30 nm can be detected. Based on the analysis of low-angle X-ray scattering data, it is established that carbon without magnetic activation has the smallest specific area of 212 m2∙сm–3, carbon after one-stage synthesis has a slightly larger area of 280 m2∙сm–3, and after two-stage synthesis has the largest specific surface area in 480 m2∙сm–3. The adsorption isotherms of blue methylene have been studied. Biocarbon ob-tained by two-step synthesis has been shown to have significantly better adsorption properties than other synthesized bio-carbons. Isotherms have been analysed based on the Langmuir model.

Go to article

Authors and Affiliations

Christina Soloviy
ORCID: ORCID
Myroslav Malovanyy
ORCID: ORCID
Ihor Bordun
ORCID: ORCID
Fedir Ivashchyshyn
ORCID: ORCID
Anatoliy Borysiuk
Yuriy Kulyk
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present findings on the syntheses and study of properties of InSe<PTHQ> nanohybrid. The introduction of guest component in GaSe matrix leads to an increase in inhomogeneities, which is clearly confirmed by the strengthening of the low-frequency horizontal branch of Nyquist diagrams. A constant magnetic field counteracts this effect and changes the behavior of the impedance hodograph at low frequencies to the opposite. Illumination leads to a colossal increase in quantum capacitance, which is clearly demonstrated in the Nyquist diagram. For the synthesized InSe<PTHQ> nanohybrid the interesting behavior of the current-voltage characteristic is reported. As a result of studies of the synthesized InSe<PTHQ> nanohybrid the effect of “negative capacity” is observed, the magnitude of which can be controlled by the electric field. Based on the constructed impedance model and proposed N-barrier model, the physical mechanisms of the investigated processes are suggested.
Go to article

Authors and Affiliations

Fedir Ivashchyshyn
1
ORCID: ORCID
Vitaliy Maksymych
2
ORCID: ORCID
Dariusz Calus
1
ORCID: ORCID
Myroslava Klapchuk
2
ORCID: ORCID
Glib Baryshnikov
3
ORCID: ORCID
Rostislav Galagan
3
ORCID: ORCID
Valentina Litvin
3
ORCID: ORCID
Piotr Chabecki
1
ORCID: ORCID
Ihor Bordun
1 2
ORCID: ORCID

  1. Czestochowa University of Technology, Al. Armii Krajowej 17, Czestochowa, 42-200, Poland
  2. Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
  3. Bohdan Khmelnytsky National University, blvd. Shevchnko 81, 18031, Cherkasy, Ukraine

This page uses 'cookies'. Learn more