Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with numerical and analytical modelling of a diamond or silicon particle embedded in a metallic matrix. The numerical model of an elastic particle in a metallic matrix was created using the Abaqus software. Truncated octahedron-shaped and spherical-shaped diamond particles were considered. The numerical analysis involved determining the effect of temperature on the elastic and plastic parameters of the matrix material. The analytical model was developed for a spherical particle in a metallic matrix. The comparison of the numerical results with the analytical data indicates that the mechanical parameters responsible for the retention of diamond particles in a metal matrix are: the elastic energy of the particle, the elastic energy of the matrix and the radius of the plastic zone around the particle. An Al-based alloy containing 5% of Si and 2% of Cu was selected to study the mechanical behaviour of silicon precipitates embedded in the aluminium matrix. The model proposed to describe an elastic particle in a metallic matrix can be used to analyze other materials with inclusions or precipitates.
Go to article

Authors and Affiliations

J. Lachowski
J.M. Borowiecka-Jamrozek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of the casting method for the production of porous composites, called syntactic foams, of the casting alloy - solid particles type. This method was used to produce composites based on Al alloys reinforced with particles of clinoptilolite, a natural mineral from the zeolite group. Before the casting process, tests were carried out on the morphology, physicochemical properties and chemical composition of the zeolite, which was obtained from a rock called zeolite tuff, mined in a quarry in Kucin, (VSK PRO-ZEO s.r.o., Slovakia). Observations of the microstructure of the produced composites were also carried out using a scanning electron microscope. Diffractometric tests of zeolite rock as delivered for research and of the produced samples reinforced with zeolite particles were also carried out. Initial studies of the density and porosity of the produced composites were performed. The usefulness of the presented method of composite production was assessed on the basis of the conducted structural tests, with particular emphasis on the particle distribution in the alloy matrix.
Go to article

Bibliography

[1] Dyga, R. (2017). Metal foams as structural packing in the construction of process equipment. Technical Transactions Mechanics. 4, 165-178. DOI: 10.4467/2353737XCT.17.057.6368.
[2] Gupta, N. (2007). A functionally graded syntactic foam material for high energy absorption under compression. Materials Letters. 61(4-5), 979-982. https://doi.org/10.1016/j.matlet.2006.06.033.
[3] Taherishargh, M., Sulong, M.A., Belova, I.V. & Murch, G.E. (2015). On the particle size effect in expanded perlite aluminum syntactic foam. Materials and Design. 66(A), 294-303. https://doi.org/10.1016/j.matdes.2014.10.073.
[4] Borowiecka- Jamrozek, J., Depczyński, W. (2017). The effect of the addition of zeolite on the properties of a sintered copper-matrix composite. Metal 2017: 26rd international conference on metallurgy and materials (pp. 1652-1657).
[5] Gottardi, G. & Galli, E. (1985). Natural zeolites, mineral and rocks. Minerals. 18, 256-284. ISBN 3 540 13939 7.
[6] Nanbin, H., Dianyue, G., Bekkum, H. (2001). Introduction to zeolite science and practice. 2nd Completely revised and expanded edition, 137, (pp. 54-59).
[7] Gil, A. (1998). Analysis of the micropore structure of various microporous materials from nitrogen adsorption at 77 K. Adsorption, 4, 197-206.
[8] Jaroniec, M. & Choma, J. (1987). Characterization of activated carbons by distribution function of adsorption potential and micropore dimension. Materials Chemistry and Physics. 18(1-20, 103-117. https://doi.org/10.1016/0254-0584(87)90115-5.
[9] Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 60(2), 309-319. https://doi.org/10.1021/ ja01269a023.
[10] Gregg, S.J., Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity. 2 Auglage. London: Academic Press.
[11] Kruk, M., Jaroniec, M. & Gadkaree, K.P. (1997). Nitrogen adsorption studies of novel synthetic active carbons. Journal of Colloid and Interface Science. 192(1), 250-256. DOI: 10.1006/jcis.1997.5009.
[12] Kruk, M., Jaroniec, M. & Sayari, A. (1997). Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir. 13(23), 6267-6273. https://doi.org/10.1021/la970776m.
[13] Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society. 73(1), 373-380. https://doi.org/10.1021/ja01145a126
Go to article

Authors and Affiliations

J.M. Borowiecka-Jamrozek
1
ORCID: ORCID
M. Kargul
1
ORCID: ORCID

  1. The Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article discusses results of an analysis of mechanical properties of a sintered material obtained from a mixture of elemental iron, copper and nickel powders ball milled for 60 hours. The powder consolidation was performed by hot pressing in a graphite mould. The hot pressing was carried out for 3 minutes at 900 °C and under a pressure of 35 MPa. The sintered specimens were tested for density, porosity, hardness and tensile strength. Their microstructures and fracture surfaces were also examined using a scanning electron microscope (SEM). The study was conducted in order to determine the suitability of the sintered material for the manufacture of metal-bonded diamond tools. It was important to assess the effects of chemical composition and microstructure of the sintered material on its mechanical properties, which were compared with those of conventional metal bond material produced from a hot-pressed SMS grade cobalt powder. Although the studied material shows slightly lower strength and ductility as compared with cobalt, its hardness and offset yield strength are sufficiently high to meet the criteria for less demanding applications.

Go to article

Authors and Affiliations

J. Lachowski
J.M. Borowiecka-Jamrozek
J. Konstanty

This page uses 'cookies'. Learn more