Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Buzz, squeak and rattle (BSR) noise has become apparent in vehicles due to the significant reductions in engine noise and road noise. The BSR often occurs in driving condition with many interference signals. Thus, the automatic BSR detection remains a challenge for vehicle engineers. In this paper, a rattle signal denoising and enhancing method is proposed to extract the rattle components from in-vehicle background noise. The proposed method combines the advantages of wavelet packet decomposition and mathematical morphology filter. The critical frequency band and the information entropy are introduced to improve the wavelet packet threshold denoising method. A rattle component enhancing method based on multi-scale compound morphological filter is proposed, and the kurtosis values are introduced to determine the best parameters of the filter. To examine the feasibility of the proposed algorithm, synthetic brake caliper rattle signals with various SNR ratios are prepared to verify the algorithm. In the validation analysis, the proposed method can well remove the disturbance background noise in the signal and extract the rattle components with well SNR ratios. It is believed that the algorithm discussed in this paper can be further applied to facilitate the detection of the vehicle rattle noise in industry.
Go to article

Authors and Affiliations

Linyuan Liang
1 2
Shuming Chen
1 2
Peiran Li
1

  1. State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing 401122, China
  2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
Download PDF Download RIS Download Bibtex

Abstract

Considering the environmental pollution caused by waste rubber, some measures should be taken to improve the utilization rate of waste rubber. In this study, the effect of Ethylene Propylene Diene Monomer (EPDM) particles in the polyurethane (PU) foams on sound absorption behavior is investigated for improving sound environment within vehicles and reducing the environment pollution. EPDM of different contents and hardness are used as fillers for producing foams with different pore morphologies and sound absorption properties. The results show adds EPDM to foam would produce smaller pores, higher density and bigger air-flow resistivity. Simultaneously, there are better sound absorption properties of the PU foam composites in the medium frequency region and the better value can be obtained at the lower frequency with the content of EPDM increasing. The hardness of EPDM also shows better influence on sound absorption properties, especially in the medium frequency region. It means the foam pore morphologies have influence on sound absorption properties.

Go to article

Authors and Affiliations

Wenbo Zhu
Shuming Chen
Yebin Wang
Tongtong Zhu
Yang Jiang

This page uses 'cookies'. Learn more