Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this review, research carried out on sorption-enhanced steam methane reforming (SESMR) process is presented and discussed. The reactor types employed to carry out this process, fixed packed bed and fluidized bed reactors, are characterized as well as their main operating conditions indicated. Also the concepts developed and investigations performed by the main research groups involved in the subject are summarized. Next the catalysts and CO2 sorbents developed to carry out SE-SMR are characterized and the relationships describing the reaction and sorption kinetics are collected. A general approach to model the process is presented as well as results obtained for a calculation example, which demonstrate the main properties of SE-SMR.

Go to article

Authors and Affiliations

Robert Cherbański
Eugeniusz Molga
Download PDF Download RIS Download Bibtex

Abstract

Activation of tyre pyrolysis char (TPC) can significantly increase its market value. To date, it has been frequently carried out in different reactors. In this work, thermogravimetric analysis was used instead. The performance of activated pyrolysis chars was tested by adsorption of acetone vapour and comparison of the equilibrium adsorption capacities for all samples. The highest equilibrium adsorption capacity was observed for the carbon burn-off of  60%. In addition, the equilibrium adsorption capacity of activated TPC decreases by about 10% after eleven adsorption/desorption cycles. Moreover, activation changed the porous structure of pyrolysis chars from mesoporous to micro-mesoporous.
Go to article

Authors and Affiliations

Tomasz Kotkowski
Robert Cherbański
Eugeniusz Molga
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a systematic thermogravimetric (TG) study on the kinetics of end-of-life tyre (ELT) pyrolysis. In the experimental part of this work, TG results are compared for tyre samples of different mass and size. This shows that the conduction resistance in the milligram scale (up to ~100 mg) tyre sample can be neglected. A comparison of experimental results demonstrates that the characteristic maxima on the DTG curve (the first derivative of TG signal) shift towards higher temperatures for higher heating rates. This phenomenon is explained to have kinetic origin and it is not caused by the internal heat transfer resistance. In the modelling part of this work, the kinetic parameters of the Three-Component Simulation Model (TCSM) are calculated and compared to the literature values. Testing of the kinetic model is carried out using experiments with a varying heating rate. This shows the limitation of the simplified kinetic approach and the appropriate selection method of the kinetic parameters.

Go to article

Authors and Affiliations

Robert Cherbański
Eugeniusz Molga
Krzysztof Wróblewski
Download PDF Download RIS Download Bibtex

Abstract

There is general agreement that primary pyrolysis products of end-of-life tyres should be valorised to improve the economics of pyrolysis. In this work, tyre pyrolysis char (TPC) is produced in a pyrolysis pilot plant designed and built at our home university. The produced TPC was upgraded to tyre-derived activated carbon (TDAC) by activation with CO2, and then characterised using stereological analysis (SA) and nitrogen adsorption at 77 K. SA showed that the grains of TPC and TDAC were quasi- spherical and slightly elongated with a 25% increase in the mean particle cross-section surface area for TDAC. The textural properties of TDAC demonstrated the BET and micropore surface areas of 259 and 70 m2/g, respectively. Micropore volume and micropore surface area were 5.8 and 6.7 times higher for TDAC than TPC at  2 nm, respectively. The n-hexane adsorption was investigated using experiments and modelling. Eight adsorption isotherms along with three error functions were tested to model the adsorption equilibrium. The optimum sets of isotherm parameters were chosen by comparing sum of the normalized errors. The analysis indicated that the Freundlich isotherm gave the best agreement with the equilibrium experiments. In relation to different activated carbons, the adsorption capacity of TDAC for n-hexane is about 16.2 times higher than that of the worst reference material and 4.3 times lower than that of the best reference material. In addition, stereological analysis showed that activation with CO2 did not change the grain’s shape factors. However, a 25% increase in the mean particle cross-section surface area for TDAC was observed.

Go to article

Authors and Affiliations

Tomasz Kotkowski
ORCID: ORCID
Robert Cherbański
ORCID: ORCID
Eugeniusz Molga
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This work investigates adsorption of n-hexane on activated tyre pyrolysis char (ATPC) and granular activated carbon (GAC) as a reference material in a fixed-bed column. Microwave-assisted regeneration is also considered. The adsorbed amount of n-hexane on ATPC is in the range of 37–58 mg/g. Microwave-assisted desorption of ATPC samples enables the recovery of up to 95% of adsorbed n-hexane in this non-optimized microwave setup with the efficiency of microwave energy conversion into heat of only 5–6%. For the 50% breakthrough time, ATPC and GAC are able to purify the n-hexane gas volumes in the ranges of 20–90 and 935–1240 cm3/g, respectively. While adsorption kinetics is not satisfactorily described by pseudo-first and pseudo-second order kinetic models, it is very well reflected by a family of dynamic adsorption models, which are modelled with a single logistic function. Internal diffusion is likely the rate limiting step during adsorption on ATPC, while external and internal diffusion likely plays a role in adsorption to GAC. Although microwave-assisted regeneration is performed in a general purpose microwave reactor, both adsorbents show excellent performance and are very good candidates for the adsorption process. Preliminary results show that magnetite can further reduce microwave energy consumption.
Go to article

Authors and Affiliations

Tomasz Kotkowski
1
ORCID: ORCID
Robert Cherbański
1
ORCID: ORCID
Eugeniusz Molga
1
ORCID: ORCID

  1. Chemical and Process Engineering Department, Warsaw University of Technology, ul. Warynskiego 1, 00-645 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of investigations into dry methane reforming (DMR). The process was aimed at obtaining synthesis gas required for the production of dimethyl ether (DME). The effect of temperature, pressure and inlet gas composition on the process was determined in the experimental part of this work. The tests were carried out in a laboratory tubular reactor over a Ni/CaO–Al2O3 catalyst. The obtained experimental results were used to verify literature kinetic data and to develop a mathematical model of the DMR process.
Go to article

Bibliography

Alipour Z., Rezaei M., Meshkani F., 2014. Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming methane. Fuel, 129, 197–203. DOI: 10.1016/j.fuel.2014.03.045.
Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N., 2018. Catalyst design for dry reforming of methane: Analysis review. Renewable Sustainable Energy Rev., 82, 2570–2585. DOI: 10.1016/j.rser.2017.09.076.
Bawadi A., Nur Azeanni A.G., Dai-Vet N.V., 2017. Recent advances in dry reforming of methane over Ni-based catalysts. J. Cleaner Prod., 162, 170–185. DOI: 10.1016/j.jclepro.2017.05.176.
Benguerba Y., Dehimi L., Virginie M., Dumas C., Ernst B., 2015. Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed bed catalytic reactor. Reac. Kinet. Mech. Cat., 114, 109–119. DOI: 10.1007/s11144-014-0772-5.
Borowiecki T., 2006. Coking of catalysts in essential chemical processes. Przem. Chem., 85, 699–702. Borowiecki T., Gołebiowski A., 2005. Modern synthesis gas and hydrogen plants. Przem. Chem., 84, 503–507.
Chanburanasiri N., Ribeiro A.M., Rodrigues A.E., Laosiripojana N., Assbumrungrat S., 2013. Simulation of methane steam reforming enhanced by in situ CO2 sorption utilizing K2CO3 promoted hydrotalcites for H2 production. Energy Fuels 27, 4457–4470. DOI: 10.1021/ef302043e.
Chein R.Y., Fung W.Y., 2019. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts. Int. J. Hydrogen Energy, 44, 14303–14315. DOI: 10.1016/j.ijhydene.2019.01.113.
Collodi G., Wheeler F., 2010. Hydrogen production via steam reforming with CO2 capture. Chem. Eng. Trans., 19, 37–42. DOI: 10.3303/CET1019007.
Debek R., Gramatyka A., Motak M., da Costa P., 2014. Syngas production by dry reforming of methane over hydrotalcite-derived catalysts. Przem. Chem., 93, 2026–2032.
Ding Y., Alpay E., 2000. Adsorption-enhanced steam-methane reforming. Chem. Eng. Sci., 55, 39–3940. DOI: 10.1016/S0009-2509(99)00597-7.
Enger B.C., Lødeng R., Holmen A., 2008. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal.,��, 346, 1–27. DOI: 10.1016/j.apcata.2008.05.018.
Farniaei M., Abbasi M., Rahnama H., Rahimpour M.R., Shariatic A., 2014. Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation. J. Nat. Gas Sci. Eng., 20, 132–146. DOI: 10.1016/j.jngse.2014.06.010.
Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2012. Kinetic and structural requirements for a CO2 adsorbent in sorption enhanced catalytic reforming of methane – Part I: Reaction kinetics and sorbent capacity. Fuel, 99, 154–164. DOI: 10.1016/j.fuel.2012.04.016.
Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2009. Steam methane reforming in a Ni/Al2O3 catalyst: Kinetics and diffusional limitations in extrudates. Can. J. Chem. Eng., 87, 945–956. DOI: 10.1002/cjce.20223.
Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2010. Methane steam reforming in large pore catalyst. Chem. Eng. Sci., 65, 1539–1550. DOI: 10.1016/j.ces.2009.10.018.
Pena M., Gómez J., Fierro J.L.G., 1996. New catalytic routes for syngas and hydrogen production. Appl. Catal., A., 144, 7–57. DOI: 10.1016/0926-860X(96)00108-1.
Richardson J.T., Paripatayadar S.A., 1990. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal., 61, 293-309. DOI: 10.1016/S0166-9834(00)82152-1.
Rostrup-Nielsen J.R., Sehested J., Norskov J.K., 2002. Hydrogen and synthesis gas by steam- and CO2 reforming. Adv. Catal., 47, 65–138. DOI: 10.1016/S0360-0564(02)47006-X.
Snoeck J.W., Froment G.F., Fowles M., 2002. Steam/CO2 reforming of methane. Carbon filament formation by the Boundouard reaction and gasification by CO2, by H2 and by steam: Kinetics study. Ind. Eng. Chem. Res., 41, 4252–4265. DOI: 10.1021/ie010666h.
Wang Y.N., Rodrigues A. E., 2005. Hydrogen production from steam methane reforming coupled with in-situ CO2 capture: Conceptual parametric study. Fuel, 84, 1778–1789. DOI: 10.1016/j.fuel.2005.04.005.
Wender I., 1996. Reactions of synthesis gas. Fuel Process. Technol., 48, 189–297. DOI: 10.1016/S0378-3820(96)01048-X.
Xiu G., Li P., Rodrigues A.E., 2003. Adsorption-enhanced steam-methane reforming with intraparticle-diffusion limitations. Chem. Eng. J., 95, 83–93. DOI: 10.1016/S1385-8947(03)00116-5.
York A.P.E., Xiao T., Green M.L.H., 2003. Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal., 22, 345-358. DOI: 10.1023/A:1023552709642.
Zambrano D., Soler J., Herguido J., Menéndez M., 2019. Kinetic study of dry reforming of methane over Ni- Ce/Al2O3 catalyst with deactivation. Top. Catal., 62, 456–466. DOI: 10.1007/s11244-019-01157-2.
Zambrano D., Soler J., Herguido J., Menéndez M., 2020. Conventional and improved fluidized bed reactors for dry reforming of methane: Mathematical models. Chem. Eng. J., 393, 124775. DOI: 10.1016/j.cej.2020.124775.
Zhang G., Liu J., Xu Y., Sun Y., 2018. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010-2017). Int. J. Hydrogen Energy, 43, 15030–15054. DOI: 10.1016/j.ijhydene.2018.06.091.
Go to article

Authors and Affiliations

Robert Cherbański
1
ORCID: ORCID
Ewelina Franczyk
2
Michał Lewak
1
Piotr Machniewski
1
Eugeniusz Molga
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  2. Łukasiewicz Research Network – New Chemical Syntheses Institute, Al. Tysiaclecia Panstwa Polskiego 13a, 24-110 Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

The ethanol fire hazards will become more frequent due to the new established targets for the consumption of renewable energy sources. With this in mind, this paper aims to widen the current knowledge on CFD modelling of such a fire. As previous works rely heavily on the data of small pool fire diameters (below 1 m), this research deals with ethanol pool fire on a one-meter test tray, using our own experimental data. A mathematical model was developed and solved using a commercial CFD package (ANSYS Fluent). A new hybrid RANS-LES (SBES) model was employed to calculate turbulent stresses. Generally, the simulation results showed a good fit with the experimental results for flame temperatures at different elevations. In particular, a minor discrepancy was only observed for the top thermocouple (1.9 m above the tray). The flame heights computed with the CFD model were on average higher than the experimental one. Good agreement was observed for the radiative fraction and the axial temperature profile on the plume centreline. The latter showed an almost perfect fit between the temperature profiles obtained from CFD simulations and those calculated from the plume law for temperature.
Go to article

Authors and Affiliations

Robert Cherbański
1
ORCID: ORCID
Leszek Rudniak
1
Piotr Machniewski
1
Eugeniusz Molga
1
ORCID: ORCID
Jarosław Tępiński
2
Wojciech Klapsa
2
Piotr Lesiak
2

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  2. Scientific and Research Centre for Fire Protection of the National Research Institute, ul. Nadwislanska 213, 05-420 Józefów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Three activated chars obtained from end-of-life tyre pyrolysis differing in activation time (AC110 – 110 min, AC130 – 130 min, and AC150 – 150 min) were successfully used as adsorbents for the removal of model dye – Rhodamine B (RhB) from aqueous solutions. The effects of solution pH, adsorption kinetics, and equilibrium adsorption were investigated. The results showed that the adsorption was strongly pH-dependent; the highest percentage of RhB dye adsorbed was obtained at pH 2.0 and the removal efficiency decreased with an increase in solution pH. Adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Weber-Morris, and Boyd kinetic models. It was found that the pseudo-second-order kinetic equation was the most appropriate for describing the adsorption kinetics and that the RhB adsorption process was controlled by a film diffusion mechanism. Adsorption equilibrium data were fitted to the Langmuir, Freundlich, Temkin, and Elovich isotherm models. The equilibrium data were best represented by the Langmuir model with the monolayer adsorption capacities of 69.96, 94.34, and 133.3 μmol/g for AC110, AC130, and AC150, respectively. It was concluded that the adsorption of RhB was closely correlated with the specific surface area (and activation time) of the activated chars.
Go to article

Authors and Affiliations

Krzysztof Kuśmierek
1
ORCID: ORCID
Andrzej Świątkowski
1
ORCID: ORCID
Tomasz Kotkowski
2
ORCID: ORCID
Robert Cherbański
2
ORCID: ORCID
Eugeniusz Molga
2
ORCID: ORCID

  1. Military University of Technology, Faculty of Advanced Technologies and Chemistry, ul. Kaliskiego 2, 00-908 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to show the effect of activation method of tyre pyrolysis char (TPC) on adsorption of bisphenol A (BPA) from aqueous solutions. The TPC was produced from end-of-life-tyres (ELT) feedstock in a pilot plant at 773 K. Activation was accomplished using two classical methods: physical activation withCO2 and chemical activation withKOH. The two produced adsorbents had pores ranging from micro- to macropores. Distinct differences in the BET surface areas and pore volumes between the adsorbents were displayed showing better performance of the chemically activated adsorbent for adsorption of BPA from water.

The results of the kinetic studies showed that the adsorption of BPA followed pseudo-second-order kinetic model. The Freundlich, Langmuir, Langmuir–Freundlich and Redlich–Peterson isotherm equations were used for description of the adsorption data. The Langmuir–Freundlich isotherm model best fits the experimental data for the BPA adsorption on both adsorbents. The Langmuir–Freundlich monolayer adsorption capacity, qmLF, obtained for the CO2-activated tyre pyrolysis char (AP-CO2) and KOH-activated tyre pyrolysis char (AP-KOH) were 0.473 and 0.969 mmol g��1, respectively.

Go to article

Authors and Affiliations

Krzysztof Kuśmierek
ORCID: ORCID
Andrzej Świątkowski
ORCID: ORCID
Tomasz Kotkowski
ORCID: ORCID
Robert Cherbański
ORCID: ORCID
Eugeniusz Molga
ORCID: ORCID

This page uses 'cookies'. Learn more