Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Jak wejść i utrzymać się na światowym rynku high- tech? Gotowych rozwiązań i odpowiedzi na kluczowe pytania można szukać w doświadczeniu innych.

Go to article

Authors and Affiliations

Krzysztof Chrzanowski
Download PDF Download RIS Download Bibtex

Abstract

Testing of image intensifier tubes is still done using mostly manual methods due to a series of both technical and legal problems with test automation. Computerized stations for semi-automated testing of IITs are considered as novelty and are under continuous improvements. This paper presents a novel test station that enables semi-automated measurement of image intensifier tubes. Wide test capabilities and advanced design solutions rise the developed test station significantly above the current level of night vision metrology.
Go to article

Authors and Affiliations

Krzysztof Chrzanowski
Download PDF Download RIS Download Bibtex

Abstract

What does it take to secure a foothold in the global high-tech market and keep such a business afloat? We can look at the experiences of other companies to find proven solutions and answers to the most important questions.

Go to article

Authors and Affiliations

Krzysztof Chrzanowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Thermal imagers often work in extreme conditions but are typically tested under laboratory conditions. This paper presents the concept, design rules, experimental verification, and example applications of a new system able to carry out measurements of performance parameters of thermal imagers working under precisely simulated real working conditions. High accuracy of simulation has been achieved by enabling regulation of two critical parameters that define working conditions of thermal imagers: imager ambient temperature and background temperature of target of interest. The use of the new test system in the evaluation process of surveillance thermal imagers can bring about a revolution in thermal imaging metrology by allowing thermal imagers to be evaluated under simulated, real working conditions.
Go to article

Authors and Affiliations

Krzysztof Chrzanowski
1 2
ORCID: ORCID

  1.   Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Download PDF Download RIS Download Bibtex

Abstract

A review of night vision metrology is presented in this paper. A set of reasons that create a rather chaotic metrologic situation on night vision market is presented. It is shown that there has been made a little progress in night vision metrology during last decades in spite of a big progress in night vision technology at the same period of time. It is concluded that such a big discrep- ancy between metrology development level and technology development can be an obstacle in the further development of night vision technology.

Go to article

Authors and Affiliations

Krzysztof Chrzanowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a detailed review on a present confused situation related to defining and measurement of the eyepiece diopter range of optical/electro-optical devices to be used for a direct observation by human observers. On the basis of this review three precise definitions of a direct view imagers eyepiece diopter are presented. One of these definitions is determined as optimal fit to describe the perception of human observers. Further on, design and measurement uncertainties of diopter meters are discussed and rules of accurate measurements are formulated. Finally, recommendations for the maximum acceptable errors of the diopter scale of eyepieces of classic types of direct view imagers are presented, as well.

Go to article

Authors and Affiliations

Krzysztof Chrzanowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a critical analysis of a current typical method to measure sensitivity of solar blind ultraviolet cameras using a high temperature blackbody as a calibrated source of ultraviolet light. It has been shown that measurement of sensitivity of solar-blind ultraviolet (SBUV) cameras defined as minimal detectable blackbody irradiance at optics plane of the tested SBUV camera generates inflated, misleading and prone to measurement errors' results that should not be used for evaluation of SBUV cameras' performance.

Go to article

Authors and Affiliations

Krzysztof Chrzanowski
ORCID: ORCID
W. Chrzanowski
Download PDF Download RIS Download Bibtex

Abstract

Solar blind UV cameras are not theoretically supposed to be sensitive to solar light. However, there is practically always some sensitivity to solar light. This limited solar sensitivity can sometimes make it impossible to detect the weak emission of a corona target located on the solar background. Therefore, solar sensitivity is one of the crucial performance parameters of solar blind UV cameras. However, despite its importance, the problem of determining solar sensitivity of solar blind UV cameras has not been analysed and solved in the specialized literature, so far. This paper presents the concept (definition, measurement method, test equipment, interpretation of results) of measuring solar sensitivity of solar blind UV cameras.
Go to article

Bibliography

  1. UViRCO Technologies. https://www.uvirco.com (2020)
  2. OFIL Systems - Daytime Corona Cameras. https://www.ofilsystems.com (2020)
  3. Zhejiang ULIRVISION Technology Co., LTD. https://www.ulirvision.co.uk (2020)
  4. Olip Systems Inc. https://www.olipsystems.com (2020)
  5. Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne. https://www.sonel.pl (2020)
  6. ICI Infrared Cameras Inc. https://www.infraredcameras.com (2020)
  7. Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras’ sensitivity. Opto-Electron. Rev. 27, 378–384 (2019). https://doi.org/10.1016/j.opelre.2019.11.009
  8. Cheng, H. et al. Performance characteristics of solar blind UV image intensifier tube. in Proc. SPIE – International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Imaging Detectors and Applications 7384 (2009). https://doi.org/10.1117/12.834700
  9. Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in IEEE International SAUPEC/RobMech/PRASA Conference 1–5 (2020). https://doi.org/10.1109/saupec/robmech/prasa48453.2020.9041014
  10. Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in Proc. SPIE – Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (2019). https://doi.org/10.1117/12.2501251
  11. Du Toit, N. S. Calibration of UV-sensitive camera for corona detection. (Stellenbosch University, South Africa, 2007). http://hdl.handle.net/10019.1/2920
  12. Pissulla, D. et al. Comparison of atmospheric spectral radiance measurements from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009). https://doi.org/10.1039/b817018e
  13. Clack, C. T. M. Modeling solar irradiance and solar PV power output to create a resource assessment using linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 56, 109–125 (2017). https://doi.org/10.1175/JAMC-D-16-0175.1
  14. G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. http://www.astm.org/cgi-bin/resolver.cgi?G173-03R20 https://doi.org/10.1520/G0173-03R20
  15. Tohsing, K., Klomkliang, W., Masiri, I. & Janjai, S. An investigation of sky radiance from the measurement at a tropical site. in AIP Conference Proceedings 1810, 080006 (2017). https://doi.org/10.1063/1.4975537
  16. Chen, H.-W. & Cheng, K.-S. A conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens. 4, 934–949 (2012). https://doi.org/10.3390/rs4040934
  17. Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001). https://doi.org/10.1016/S0038-092X(01)00054-8
  18. Gueymard, C. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. (Florida Solar Energy Center, 1995)
  19. Gueymard, C. A. Reference solar spectra: Their evolution, standard- ization issues, and comparison to recent measurements. Adv. Space Res. 37, 323–340 (2006). https://doi.org/10.1016/j.asr.2005.03.104
  20. TOMS Meteor-3 Total Ozone UV-Reflectivity Daily L3 Global 1 deg x 1.25 deg V008, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), TOMS Science Team, https://disc.gsfc.nasa.gov/datacollection/TOMSM3L3_008.html (2021)
  21. SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/smarts.html (2020)
  22. Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2, 000029 (2014). https://doi.org/10.12952/journal.elementa.000029
  23. Riordan, C. & Hulstron, R. What is an air mass 1.5 spectrum? (solar cell performance calculations). in IEEE Conference on Photovoltaic Specialists (1990). https://doi.org/10.1109/pvsc.1990.111784
  24. Wikipedia contributors. Air mass (solar energy). Wikipedia. https://en.wikipedia.org/wiki/Air_mass_(solar_energy) (2020)
  25. Ritter, M. E. The Physical Environment: an Introduction to Physical Geography. https://www.thephysicalenvironment.com (2020)
  26. NOAA Research. NOAA Solar Position Calculator. https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html (2020)
  27. Global Solar Atlas. https://globalsolaratlas.info/download/world (2020)
  28. Blanc, P. et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 110, 561–577 (2014). https://doi.org/10.1016/j.solener.2014.10.001
  29. Class ABB Small Area Solar Simulators. Newport Corporation. https://www.newport.com/f/small-area-solar-simulators (2020)
  30. Dai, C., Wu, Z., Qi, X., Ye, J. & Chen, B. Traceability of spectro- radiometric measurements of multiport UV solar simulators. in Proc. SPIE - International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Appli- cations 8910, 8910-2 (2013). https://doi.org/10.1117/12.2030753
  31. Christiaens, F. & Uhlmann, B. Guidelines for Monitoring UV Radiation Sources. (COLIPA, 2007)
  32. Qualitätsmanagement-Handbuch, Abteilung 7, Physikalisch-Tech- nische Bundesanstalt (PTB), https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilu ng_7/QMH_Abt7_KAP3_1_A16_a.pdf (2020). [in German]
Go to article

Authors and Affiliations

Krzysztof Chrzanowski
1 2
ORCID: ORCID
Bolesław Safiej
2

  1. Military University of Technology, Institute of Optoelectronics, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  2. INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland

This page uses 'cookies'. Learn more