Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Silicon – molybdenum cast iron commonly called SiMo due to its unique properties has becoming more and more interesting engineering material. The history and development of this alloy is relatively long but, due to the significant difficulties during the manufacturing process resulting in the lower final quality than expected, it has not been applied to often in practice. The biggest challenge is its brittleness as a result of the carbides precipitations. During last few years, thanks to the many important researches made and the general foundry technology development, the interest in SiMo iron has been rapidly growing, especially for the castings for heavy duty applications like corrosion, high temperature and wear abrasion resistant parts. In the article the heat treatment attempts to improve the microstructure of SiMo castings has been presented. The goal was to destroy or at least to refine and uniformly distribute the carbides precipitations to improve mechanical properties of the exhaust manifold castings for the cars. The experiments were carried out for the alloy contains approx. 4% Si, 1% Mo and 3.2%C. The range of the research included: hardness measuring, standard mechanical properties and microstructure for as-cast state and after that the subsequent heat treatment process with another properties check. The result of the heat treatment was the elimination of pearlite from the metal matrix. Moreover, the changes of the carbide molybdenum – rich phase morphology were observed. The dispersion of the carbides precipitations in the carbides area was observed. The experiments proved the possibility to control the microstructure and the mechanical properties of the SiMo castings by means of heat treatment but only to some extent.

Go to article

Authors and Affiliations

B. Cygan
M. Stawarz
J. Jezierski
Download PDF Download RIS Download Bibtex

Abstract

The article presents the new technology of the refractory materials used for the ladles and pouring devices. The aim for solving the majority of the problems that originated from the refractory lining was to develop the group of cement-free TRIAD products by Vesuvius company. The cement-free setting system in the TRIAD products eliminates calcium oxide (CaO) that occurs in low and extra low cement concretes resulting in its higher strength at higher temperatures. The features of the new cement-free castables were described. One of the most unique features of this technology is the porous material structure. Small venting microchannels are formed during the concrete setting process. These micro-channels allow for removing water vapor from the lining without affecting its refractory properties. On the other hand, the diameter of pores is so low that it disallows the penetration of slag and metal into the lining, extends its operating life at the same time facilitates cleaning and removing build-ups. The procedure of the preparation of these materials, as well as the method of building of the lining, were presented. An example of the practical use of these materials in the ductile cast iron foundry was presented, showing the advantages of the new refractory materials over the traditional ones.
Go to article

Bibliography

[1] Drevin, J. (2014). Triad – a new range of user-friendly, high-strength refractory concretes. Przegląd Odlewnictwa. 9-10, 390-393. (in Polish).
[2] Rybak, M. (2011). Influence of alumina cement hydration conditions on concrete properties. Piece Przemysłowe & Kotły. 1, 21-25. (in Polish).
[3] Drevin J. (2011). Triad – Triad high-performance castable linings. Foundry Practice. 253(6) 16-20.
[4] Cygan B., Dorula J., Jezierski J. (2018). TRIAD - modern technology of non-cement concrete in cast iron foundry. In Congress Proceedings of the 73rd World Foundry Congress "Creative Foundry", 23rd–27th September 2018 (pp. 561-562). Krakow, Poland: Polish Foundrymen's Association.

Go to article

Authors and Affiliations

B. Cygan
1 2
J. Dorula
3
J. Jezierski
1
ORCID: ORCID

  1. Silesian University of Technology, Department of Foundry Engineering, 7 Towarowa, 44-100 Gliwice, Poland
  2. Teksid Iron Poland Sp. z o.o., 49 Ciężarowa, 43-430 Skoczów, Poland
  3. Vesuvius Poland Sp. z o.o. , Foundry Division - Biuro Handlowe, Portowa Business Center, 8 Portowa, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more