Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of the research related to the decomposition of polylactic acid (PLA)/halloysite nanotube (HNTs) biocomposites into a simple organic form. After manufacturing the nanocomposites, the evaluation of the composting process simulation was conducted using the biodegradation method. First, the selected properties of PLA/HNTs biocomposites, such as density, water absorption, and impact strength were tested. Next, the impact of the composting process on the behavior of PLA/HNTs composites was investigated from 30 to 90 days. Finally, the loss of mass of the composites, hardness, and the structural changes of biocomposites under the composting conditions before and after the composting were evaluated using SEM microscopy. The results showed that the PLA modified by HNT particles has biodegradation-friendly properties and therein is fully suitable for organic recycling. Due to this, in the coming years, it may contribute to the replacement of non-biodegradability polymers, i.e. polyolefins and polyesters, and reduction of plastic packaging wastes.
Go to article

Bibliography

  1.  M. Rybaczewska-Błażejowska and A. Mena-Nieto, “Circular economy: comparative life cycle assessment of fossil polyethylene terephthalate (PET) and its recycled and bio-based counterparts”, Manag. Prod. Eng. Rev. 11(4), 121–12 (2020).
  2.  D. Czarnecka-Komorowska and K. Wiszumirska, “Sustainability design of plastic packaging for the Circular Economy”, Polimery 65(1), 8–17 (2020).
  3.  J. Flizikowski and M. Macko, ”Competitive design of shredder for plastic in recycling. Ed. By I. Horvath, P. Xirouchakis, in Proc. of 2004 5th International Symposium on Tools and Methods of Competitive Engineering, Lausanne, Switzerland, 2004, pp. 1147‒1148.
  4.  P. Wiseman, Petrochemicals, Wiley, New York.1986.
  5.  P. Krawiec, L. Różanski, D. Czarnecka-Komorowska, and Ł. Warguła, “Evaluation of the Thermal Stability and Surface Characteristics of Thermoplastic Polyurethane V-Belt”, Materials 13(7), 1502 (2020).
  6.  V. Siracusa, P. Rocculi, S. Romani, and M.D. Rosa, “Biodegradable polymers for food packaging: a review”, Trends Food Sci. Technol. 19(12), 634‒643 (2008).
  7.  J.H. Song, R.J. Murphy, R. Narayan, and G.B.H. Davies, “Biodegradable and compostable alternatives to conventional plastics”, Phil. Trans. Roy. Soc. London B 364(1526), 2127–2139 (2009).
  8.  I. Wojnowska-Baryła, D. Kulikowska, and K. Bernat, “Effect of Bio-Based Products on Waste Management”, Sustainability 12(5), 2088 (2020).
  9.  P. Sakiewicz, R. Nowosielski, W. Pilarczyk, K. Gołombek, and M. Lutyński, “Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL)”, J. Achiev. Mater. Manuf. Eng. (2), 177‒191 (2011).
  10.  Y. Tokiwa and B.P. Calabia, “Biodegradability and biodegradation of poly(lactide)”, Appl. Microbiol. Biotechnol, 72(2), 244–251 (2006).
  11.  H. Nishida and Y. Tokiwa, “Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation”, J. Appl. Polym. Sci. 46(8), 1467–1476 (1992).
  12.  F. Razza, M. Fieschi, F.D. Innocent, and C. Bastioli, “Compostable cutlery and waste management: An LCA”, Waste Manag. 29, 1424‒1433 (2009).
  13.  APME 2002, “Using waste plastic as a substitute for coal”, Warmer Bull. 83, 20‒21 (2002).
  14.  ASTM 2002, “Standard specification for compostable plastics (Designation: D 6400‒99)”, ASTM International, USA 2002.
  15.  R. Narayan, ”Biobased and biodegradable polymer materials: Rationale, drivers, and technology exemplars”, ACS Symposium Series 939(18), 282‒306 (2006).
  16.  H. Saveyn and P. Eder, “Kryteria end-of-waste dla odpadów biodegradowalnych poddawanych obróbce biologicznej (kompost i fermentat): Propozycje techniczne”, Luxembourg, Publications Office of the European Union, 2014.
  17.  W. Sikorska, M. Musioł, J. Rydz, M. Kowalczuk, and G. Adamus, “Industrial composting as a waste management method of polyester materials obtained from renewable sources”, Polimery 11‒12, 818‒827 (2019).
  18.  J.S. Yaradoddi et al., “Alternative and Renewable Bio-based and Biodegradable Plastics”, in Handbook of Ecomaterials, eds. L. Martínez, O. Kharissova, B. Kharisov, Springer, Cham, 2019.
  19.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad Sci. Tech. Sci. 68(2), 199‒206 (2020).
  20.  A. Höglund, K. Odelius, and A.C. Albertsson, “Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(L-lactide)”, ACS Appl. Mater. Interfaces 4‒5, 2788‒2793 (2012).
  21.  L. Avérous, “Polylactic acid: Synthesis, properties and applications”, in Monomers, Polymers and Composites from Renewable Resources, pp. 433–450, eds. M.N. Belgacem, A. Gandini, Elsevier; Oxford, UK, 2008.
  22.  G. Kale et al., “Compostability of Bioplastic Packaging Materials: An Overview”, Macromol. Biosci. 7(3), 255‒277 (2007).
  23.  T. Iwata and Y. Doi, “Morphology and enzymatic degradation of poly(L-lactic acid) single crystals, Macromolecules 31(8), 2461–2467 (1998).
  24.  R.T. McDonald, S. McCarthy, and R.A. Gross, “Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity”, Macromolecules 29(23), 7356–7361 (1996).
  25.  H. Tsuji and S. Miyauchi, “Poly(L-lactide): VI. Effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region”, Polym. Degrad. Stab. 71(3), 415–424 (2001).
  26.  Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by Rhizopus delemar lipase”, Agric. Biol. Chem. 42(5), 1071–1072 (1978).
  27.  S. Li and S. McCarthy, “Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s”, Macromolecules 32(13), 4454–4456 (1999).
  28.  A.Torres, A.S.M. Li, S. Roussos, and M. Vert, “Degradation of L-and DL-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida”, J. Environ. Polym. Degrad. 4, 213–223 (1996).
  29.  T. Ohkita and S.H. Lee, “Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites”, J. Appl. Polym. Sci. 100(4), 3009–3017 (2006).
  30.  H. Urayama, T. Kanamori, and Y. Kimura “Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate units”, Macromol. Mater. Eng. 287(2), 116–121 (2002).
  31.  O. Gil-Castell et al., “Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost”, Polym. Degrad. Stab. 158, 40–51 (2018).
  32.  J. Giri et al., “Compostable composites of wheat stalk micro- and nanocrystalline cellulose and poly(butylene adipate-co-terephthalate): Surface properties and degradation behavior”, J. Appl. Polym. Sci. 136(43), 48149 (2019).
  33.  P. Olsén, N. Herrera, and L.A. Berglund, “Toward biocomposites recycling: localized interphase degradation in PCL-cellulose biocomposites and its mitigation”, Biomacromolecules 21(5), 1795–1801 (2020).
  34.  L. Mespouille, Ph. Degee, and Ph. Dubois, ”Amphiphilic poly(N,N-dimethylamino-2-ethyl methacrylate)-g-poly(ε-caprolactone) graft copolymers: synthesis and characterisation”, Eur. Polym. J. 41(6), 1187‒1195 (2005).
  35.  D. Neugebauer, “The synthesis of grafted copolymers by a combination of two controlled polymerization techniques”, Polimery 56(7‒8), 521‒629 (2011).
  36.  NatureWorks catalogue [Online]. Available: http://www.cn-plas.com/uploads/soft/190227/3260HP.pdf (Accessed on 25 Oct. 2020).
  37.  Sigma-Aldrich Catalogue [Online]. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/685445?lang=pl&region=PL (Accessed on 10 Oct. 2020).
  38.  K. Gawdzińska, S. Paszkiewicz, E. Piesowicz, K. Bryll, I. Irska, A. Lapis, E. Sobolewska, A. Kochmańska, W. Ślączka, “ Preparation and characterization of hybrid nanocomposites for dental applications”, Applied Sciences 9(7), 1381 (2019).
  39.  Polish standard PN-EN ISO 1183-1:2004. Plastics – Methods for determining the density of non-cellular plastics. Part 1: Immersion method, liquid pyknometer method and titration method (accessed on 28 Oct. 2020).
  40.  Polish standard PN-EN ISO 179:2010. Plastics – Determination of Charpy impact properties – Part 1: Non-instrumented impact test. (accessed on 28 Oct. 2020).
  41.  Polish standard PN-EN ISO 62:2008. Plastics – Determination of water absorption. (accessed on 29 Oct. 2020).
  42.  W. Grellmann and S. Seidler, „Polymer Testing” Hanser Publications, OH, 2013.
  43.  D. Czarnecka-Komorowska, E. Kostecka, K. Bryll, and K. Gawdzińska, „Analysis of the decomposition using the short degradation technique of polylactic acid/halloysite nanotube biocomposites”, Machine Modelling and Simulations MMS 2020 Conference, Tleń, 2020, (to be published).
  44.  A. Fick, “On Liquid Diffusion”, Lond. Edinb. Dubl. Phil. Mag. 10, 30–39 (1855).
  45.  A. Fick, “Ueber Diffusion (On Diffusion)”, Ann. Phys. Chemie von J.C. Poggendorffs 94, 59–86 (1855).
  46.  Polish standard PN-EN ISO 868. Plastics and ebonite — Determination of indentation hardness by means of a durometer (Shore hardness). (accessed on 29 Oct. 2020).
  47.  P. Russo, S. Cammarano, E. Bilotti, T. Peijs, P. Cerruti, and D. Acierno, ”Physical properties of poly lacticacid/clay nanocomposite films: Effect of filler content and annealing treatment”, J. Appl. Polym. Sci. 131(2), 39798 (2014).
  48.  K. Prashantha, B. Lecouvet, M. Sclavons, M.F Lacrampe, and P. Krawczak, “Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment”, J. Appl. Polym. Sci. 128(3), 1895–1903, (2013).
  49.  S. Montava-Jorda, V. Chacon, D. Lascano, L. Sanchez-Nacher, and N. Montanes, “Manufacturing and characterization of functionalized aliphatic polyester from poly(lactic acid) with halloysite nanotubes”, Polymers 11(8), 1314 (2019).
  50.  M. Murariu, A.-L. Dechief, Y. Paint, S. Peeterbroeck, L. Bonnaud, and P. Dubois, “Polylactide (PLA)-halloysite nanocomposites: Production. morphology and key-properties”, J. Polym. Environ. 20(4), 932–943 (2012).
  51.  D. Czarnecka, D. Ciesielska, and J. Jurga, “The brittle-ductile transition (BDT) in recycled polymers”, Proceeding of the Rewas’04, Global Symposium on Recycling, Waste Treatment and Clean Technology, Madrid, Spain, 2004.
  52.  J.L. Thomason and M.A. Vlug, “Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 4. Impact properties”, Composites Part A 28A, 277‒288 (1997).
  53.  Y. Chen, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, and D.M. Devine, “Halloysite nanotube reinforced polylactic acid composite”, Polym. Compos. 38(10), 2166–2017 (2017).
  54.  S. Montava-Jorda, V. Chacon, D. Lascano, L. Sanchez-Nacher, and N. Montanes, “Manufacturing and characterization of functionalized aliphatic polyester from poly(lactic acid) with halloysite nanotubes”, Polymers 11(8), 1314 (2019).
  55.  R. Kumar, M.K. Yakubu, and R.D. Anandjiwala, “Biodegradation of flax fiber reinforced poly lactic acid”, Express Polym. Lett. 4(7), 423–430 (2010).
  56.  A.P. Mathew, K. Oksman, and M. Sain, “Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC)”, J. Appl. Polym. Sci. 97(5), 2014–2025 (2005).
Go to article

Authors and Affiliations

Dorota Czarnecka-Komorowska
1
ORCID: ORCID
Katarzyna Bryll
2
ORCID: ORCID
Ewelina Kostecka
2
ORCID: ORCID
Małgorzata Tomasik
3
ORCID: ORCID
Elżbieta Piesowicz
4
ORCID: ORCID
Katarzyna Gawdzińska
2
ORCID: ORCID

  1. Institute of Materials Technology, Polymer Processing Division; Poznan University of Technology, 60-965 Poznan, Poland
  2. Department of Machines Construction and Materials, Maritime University of Szczecin, 71-650 Szczecin, Poland
  3. Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
  4. Institute of Material Science and Engineering, West Pomeranian University of Szczecin, 70-310 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Many researchers in the developed countries have been intensively seeking effective methods of plastic recycling over the past years. Those techniques are necessary to protect our natural environment and save non-renewable resources. This paper presents the concept of an electrostatic separator designed as a test bench dedicated to the separation of mixed plastic waste from the automotive industry. According to the current policy of the European Union on the recycling process of the automotive industry, all these waste materials must be recycled further for re-entering into the life cycle (according to the circular economy). In this paper, the proposed concept and design of the test bench were offered the feasibility to conduct research and technological tests of the electrostatic separation process of mixed plastics. The designed test bench facilitated assessing the impact of positions of high-voltage electrodes, the value and polarity of the high voltage, the variable speed of feeders and drums, and also triboelectrification parameters (like time and intensity) on the process, among others. A specialized computer vision system has been proposed and developed to enable quick and reliable evaluation of the impact of process parameters on the efficiency of electrostatic separation. The preliminary results of the conducted tests indicated that the proposed innovative design of the research stand ensures high research potential, thanks to the high accuracy of mixed plastics in a short time. The results showed the significant impact of the corona electrode position and the value of the applied voltage on the separation process effectiveness. It can be concluded that the results confirmed the ability to determine optimally the values of the studied parameters, in terms of plastic separation effectiveness. This study showed that this concept of an electrostatic separator designed as a test bench dedicated for separation of mixed plastic waste can be widely applied in the recycling plastic industry.
Go to article

Bibliography

  1.  J. Flizikowski and M. Macko, “Competitive design of shredder for plastic in recycling”, Tools And Methods Of Competitive Engineering 1(2), 1147–1148 (2004).
  2.  M. Macko, K. Tyszczuk, G. Śmigielski, J. Flizikowski, and A. Mroziński, “The use of CAD applications in the design of shredders for polymers”, MATEC Web of Conferences 157, 02027 (2018), doi: 10.1051/matecconf/201815702027.
  3.  D. Czarnecka-Komorowska and K. Wiszumirska, “Sustainability design of plastic packaging for the Circular Economy”, Polimery 65(1), 8–17 (2020), doi: 10.14314/polimery.2020.1.2.
  4.  D. Czarnecka-Komorowska, K. Wiszumirska, and T. Garbacz, “Films LDPE/LLDPE made from post–consumer plastics: processing, structure, mechanical properties”, Adv. Sci. Technol. Res. J. 12(3), 134–142 (2018).
  5.  Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles – Commission Statements, 2020.
  6.  End-of-life vehicle statistics – Eurostat. [Online] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=End-of-life_vehicle_ statistics (accessed Feb. 26, 2020).
  7.  M. Macko, Z. Szczepanski, E. Mikolajewska, J. Nowak, and D. Mikolajewski, “Repository of 3D images for education and everyday clinical practice purposes”, Bio-Algorithms Med-Syst. 13(2), 111–116 (2017).
  8.  J. Kopowski, I. Rojek, D. Mikołajewski, and M. Macko, “3D printed hand exoskeleton-own concept”, in Advances in manufacturing II, pp. 298–306, Springer, 2019.
  9.  G. Dodbiba and T. Fujita, “Progress in separating plastic materials for recycling”, Phys. Sep. Sci. Eng. 13(3–4), 165–182 (2004).
  10.  P. Krawiec, L. Różański, D. Czarnecka-Komorowska, and Ł. Warguła, “Evaluation of the thermal stability and surface characteristics of thermoplastic polyurethane V-Belt”, Materials 13(7), 1502 (2020).
  11.  S.A. Pradeep, R.K. Iyer, H. Kazan, and S. Pilla, “Automotive applications of plastics: past, present, and future”, in Applied Plastics Engineering Handbook, 651–673, Elsevier, 2017.
  12.  X. Yang, X. Liu, L. Song, C. Y. Lv, and X. Cheng, “Study on the separators for plastic wastes processing”, Procedia Eng. 174, 497–503 (2017).
  13.  S. Serranti and G. Bonifazi, “Techniques for separation of plastic wastes”, in Use of Recycled Plastics in Eco-efficient Concrete, pp. 9–37, Elsevier, 2019.
  14.  K.C. Lai, S.K. Lim, P.C. Teh, and K.H. Yeap, “An artificial neural network approach to predicting electrostatic separation performance for food waste recovery”, Pol. J. Environ. Stud. 26(4), 1921–1926 (2017), doi: 10.15244/pjoes/68963.
  15.  J. Wang, M. de Wit, R. M. Boom, and M.A.I. Schutyser, “Charging and separation behavior of gluten–starch mixtures assessed with a custom-built electrostatic separator”, Sep. Purif. Technol. 152, 164–171 (2015), doi: 10.1016/j.seppur.2015.08.025.
  16.  S. Tabtabaei, D. Konakbayeva, A. R. Rajabzadeh, and R.L. Legge, “Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation”, Food Chem. 283, 101–110 (2019), doi: 10.1016/j.foodchem.2019.01.031.
  17.  J. Wang, J. Zhao, M. de Wit, R.M. Boom, and M.A.I. Schutyser, “Lupine protein enrichment by milling and electrostatic separation”, Innovative Food Sci. Emerg. Technol. 33, 596–602 (2016), doi: 10.1016/j.ifset.2015.12.020.
  18.  A. Iuga, L. Calin, V. Neamtu, A. Mihalcioiu, and L. Dascalescu, “Tribocharging of plastics granulates in a fluidized bed device”, J. Electrostat. 63(6), 937–942 (2005), doi: 10.1016/j.elstat.2005.03.064.
  19.  L. Calin et al., “Tribocharging of Granular Plastic Mixtures in View of Electrostatic Separation”, IEEE Trans. Ind. Appl. 44(4), 1045–1051 (2008), doi: 10.1109/TIA.2008.926689.
  20.  M. Żenkiewicz, T. Żuk, and J. Pietraszek, “Modeling electrostatic separation of mixtures of poly(ε-caprolactone) with poly(vinyl chloride) or poly(ethylene terephthalate)”, Przem. Chem. 95(9), 1687–1692 (2016), doi: 10.15199/62.2016.9.6.
  21.  A. Cieśla, M. Skowron, and P. Syrek, “Elektryzacja ziaren węgla metodą tryboelektryczną”, Przegląd Elektrotechniczny, 1(1), 129–132 (2017), doi: 10.15199/48.2017.01.31.
  22.  H. Lu, J. Li, J. Guo, and Z. Xu, “Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board”, J. Mater. Process. Technol. 197(1), 101–108 (2008), doi: 10.1016/j.jmatprotec.2007.06.004.
  23.  T. Dziubak, “Experimental research on separation efficiency of aerosol particles in vortex tube separators with electric field”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 503–516 (2020).
  24.  L. Dascalescu et al., “Factors that influence the efficiency of a fluidized-bed-type tribo-electrostatic separator for mixed granular plastics”, J. Phys. Conf. Ser. 301, 012066 (2011), doi: 10.1088/1742-6596/301/1/012066.
  25.  A. Cieśla, W. Kraszewski, M. Skowron, A. Surowiak, and P. Syrek, “Application of electrodynamic drum separator to electronic wastes separation”, Min. Res. Manag. 32(1), 155–174 (2016), doi: 10.1515/gospo-2016-0007.
  26.  H.M. Veit, T.R. Diehl, A.P. Salami, J.S. Rodrigues, A.M. Bernardes, and J. A. S. Tenório, “Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap”, Waste Manage. 25(1), 67–74 (2005), doi: 10.1016/j.wasman.2004.09.009.
  27.  U. Śliwa and M. Skowron, “Analysis of the electric field distribution in the drum separator of different electrode configuration”, IAPGOS, 6, 79–82 (2016).
  28.  L. Dascalescu, T. Zeghloul, and A. Iuga, “Chapter 4 – Electrostatic separation of metals and plastics from waste electrical and electronic equipment”, in WEEE Recycling, 75–106, 2016.
  29.  G. Bedeković, B. Salopek, and I. Sobota, “Electrostatic separation of PET/PVC mixture”, Tech. Gaz. 18(2), 261–266 (2011).
  30.  L. Calin, A. Mihalcioiu, A. Iuga, and L. Dascalescu, “Fluidized bed device for plastic granules triboelectrification”, Part. Sci. Technol. 25(2), 205–211 (2007), doi: 10.1080/02726350701257782.
  31.  T. Zeghloul, A. Mekhalef Benhafssa, G. Richard, K. Medles, and L. Dascalescu, “Effect of particle size on the tribo-aero-electrostatic separation of plastics”, J. Electrostat. 88, 24–28 (2017), doi: 10.1016/j.elstat.2016.12.003.
  32.  M. Mirkowska, M. Kratzer, C. Teichert, and H. Flachberger, “Principal factors of contact charging of minerals for a successful triboelectrostatic separation process – a review”, Berg Huettenmaenn Monatsh 161(8), 359–382 (2016), doi: 10.1007/s00501-016-0515-1.
  33.  M. Dötterl et al., “Electrostatic Separation”, in Ullmann’s Encyclopedia of Industrial Chemistry, pp. 1–35, Wiley-VCH Verlag GmbH & Co. KGaA, 2016, doi: 10.1002/14356007.b02_20.pub2.
  34.  M. Lungu, “Electrical separation of plastic materials using the triboelectric effect”, Miner. Eng. 17(1), 69–75 (2004).
  35.  A. Benabderrahmane, K. Medles, T. Zeghloul, P. Renoux, L. Dascalescu, and A. Parenty, “Triboelectrostatic separation of brominated f lame retardants polymers from mixed granular wastes”, in 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, USA, 2019, pp. 1–4, doi: 10.1109/IAS.2019.8912375.
  36.  M. Żenkiewicz and T. Żuk, “Physical basis of tribocharging and electrostatic separation of plastics”, Polimery 59(4), 314–323 (2014), doi: 10.14314/polimery.2014.314.
  37.  Y. Wu, G.S.P. Castle, and I.I. Inculet, “Induction charging of granular materials in an electric field”, in Conference Record of the 2004 IEEE Industry Applications Conference. 39th IAS Annual Meeting, 2004, pp. 2366‒2372 vol. 4, doi: 10.1109/IAS.2004.1348806.
  38.  F. Portoghese, F. Berruti, and C. Briens, “Continuous on-line measurement of solid moisture content during fluidized bed drying using triboelectric probes”, Powder Technol. 181(2), 169–177 (2008), doi: 10.1016/j.powtec.2007.01.003.
  39.  J.-K. Lee, J.-H. Shin, and Y.-J. Hwang, “Triboelectrostatic separation system for separation of PVC and PS materials using fluidized bed tribocharger”, KSME Inter. J. 16(10), 1336–1345 (2002), doi: 10.1007/BF02983841.
  40.  L. Dascalescu et al., “Charges and forces on conductive particles in roll-type corona-electrostatic separators”, IEEE Trans. Ind. Appl. 31(5), 947–956, (1995), doi: 10.1109/28.464503.
  41.  Y.E. Prawatya, M.B. Neagoe, T. Zeghloul, and L. Dascalescu, “Surface-electric-potential characteristics of tribo- and corona-charged polymers: a comparative study”, IEEE Trans. Ind. Appl. 53(3), 2423–2431 (2017), doi: 10.1109/TIA.2017.2650145.
  42.  Y. Prawatya, B. Neagoe, T. Zeghloul, and L. Dascalescu, “Comparison between the surface-electric-potential characteristics of tribo- and corona- charged polymers”, in 2015 IEEE Industry Applications Society Annual Meeting, 2015, pp. 1–5, doi: 10.1109/IAS.2015.7356756.
  43.  M. Maammar, W. Aksa, M. F. Boukhoulda, S. Touhami, L. Dascalescu, and T. Zeghloul, “Modeling and simulation of nonconductive particles trajectories in a multifunctional electrostatic separator”, IEEE Trans. on Ind. Applicat. 55(5), 5244–5252 (2019), doi: 10.1109/ TIA.2019.2920805.
  44.  K. Flynn, A. Gupta, and F. Hrach, “Electrostatic Separation of Dry Granular Plant Based Food Materials – ST Equipment & Technology (STET)”, 2017. [Online]. Available: https://steqtech.com/electrostatic-separation-dry-granular-plant-based-food-materials/.
  45.  D. Czarnecka-Komorowska, K. Grześkowiak, P. Popielarski, M. Barczewski, K. Gawdzińska, and M. Popławski, “Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing-structure property relationships”, Materials 13(10), 2255 (2020).
  46.  Ł. Knypiński, “Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm”, Open Phys. 15(1), 965–970 (2017).
  47.  Ł. Knypiński, K. Pawełoszek, and Y. Le Menach, “Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm”, Energies 13(5), 1186 (2020), doi: 10.3390/en13051186.
  48.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199–206 (2020).
Go to article

Authors and Affiliations

Roman Regulski
1
ORCID: ORCID
Dorota Czarnecka-Komorowska
2
ORCID: ORCID
Cezary Jędryczka
3
ORCID: ORCID
Dariusz Sędziak
1
ORCID: ORCID
Dominik Rybarczyk
1
ORCID: ORCID
Krzysztof Netter
1
ORCID: ORCID
Mariusz Barański
3
ORCID: ORCID
Mateusz Barczewski
2
ORCID: ORCID

  1. Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland
  2. Institute of Materials Technology, Poznan University of Technology, 60-965 Poznań, Poland
  3. Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznań, Poland

This page uses 'cookies'. Learn more