Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper aims at presenting the possibilities of applying gas chromatography for the determination of pharmaceutical residues in different matrices. Section one of the study underscores the environmental advantages of employing GC for such analyses. Section two presents the innovative methods for determining pharmaceuticals in the environment. The last section discusses the results of the analysis of the GC and GC-MS market in Poland.

According to the literature data, the described methods were applied for the analysis of real samples: wastewaters, surface waters, soil samples. The samples were collected from the Pomerania region and the Gulf of Gdańsk. The pharmaceuticals were determined in various environmental samples. The highest concentrations were found in raw wastewater, medium – in a treated wastewater, and the lowest – in surface water. The most frequently detected pharmaceuticals were: ibuprofen, paracetamol, diclofenac and naproxen, all belonging to NSAIDs.

Furthermore, the results of the study of the Polish GC market indicate that a very limited number of entities are currently using chromatographic techniques, and pharmaceutical residues tests are exceptions, mainly due to the lack of the legal requirements in this field and the lack of own laboratories.

Go to article

Authors and Affiliations

Krzysztof Kuśmierek
Paulina Idźkiewicz
Andrzej Świątkowski
Lidia Dąbek
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the possibility of using natural carbonaceous materials such aspeat, lignite, and hard coal as low-cost sorbents for the removal of Direct Orange 26 azo dye from an aqueous solution. The adsorption kinetics and the influence of experimental conditions were investigated. The following materials were used in the research: azo dye Direct Orange 26, Spill-Sorb “Fison” peat (Alberta, Canada), lignite (Bełchatów, Poland), and hard coal (“Zofiówka” mine, Poland). The morphology and porous structure of the absorbents were tested. Dye sorption was carried out under static conditions, with different doses of sorbents, pH of the solution, and ionic strength. It was observed that the adsorption of Direct Orange 26 dye on all three adsorbents was strongly dependent on the pH of the solution, while the ionic strength of the solution did not affect the adsorption efficiency. The adsorption kinetics were consistent with the pseudo-second-order reaction model. The stage which determines the rate of adsorption is the diffusion of the dye in the near-surface layer. The process of equilibrium adsorption of Direct Orange 26 dye on all tested adsorbents is best described by the Langmuir isotherm. The maximum adsorption capacity for peat, brown coal and hard coal was 17.7, 15.1 and 13.8 mg/g, respectively. The results indicate that peat, lignite, and hard coal can be considered as alternative adsorbents for removing azo dyes from aqueous solutions.
Go to article

Bibliography

  1. Al-Ghouti, M.A. & Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. DOI:10.1016/j.jhazmat.2020.122383
  2. Allen, S.J., Mckay,G. & Porter, J.F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, pp. 322–333. DOI:10.1016/j.jcis.2004.08.078
  3. Bansal, R.C. & Goyal, M. (2005). Activated Carbon Adsorption, Taylor & Francis, CRC Press, Boca Raton, 2005. DOI:10.1201/9781420028812
  4. Bhatti, H.N., Safa, Y., Yakout, S.M., Shair, O.H., Iqbal, M. & Nazir, A. (2020). Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150, pp. 861–870. DOI:10.1016/j.ijbiomac.2020.02.093
  5. Dzieniszewska, A. & Kyzioł-Komosińska, J. (2018). Zdolności sorpcyjne wybranych substancji bogatych w materię organiczną w stosunku do barwników, Polska Akademia Nauk, Komitet Inżynierii Środowiska, Monografie IPIS PAN, Nr 142, Zabrze, Polska.
  6. Goswami, L., Kushwaha, A., Kafle, S.R. & Kim, B.-S. (2022). Surface modification of biochar for dye removal from wastewater. Catalysts, 12, 817. DOI:10.3390/catal12080817
  7. Gupta, V.K. & Suhas (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 90, pp. 2313–2342. DOI:10.1016/j.jenvman.2008.11.017
  8. Hassani, A., Vafaei, F., Karaca,S. & Khataee, A.R. (2014). Adsorption of a cationic dye from aqueous solution using Turkish lignite: Kinetic, isotherm, thermodynamic studies and neural network modeling. Journal of Industrial and Engineering Chemistry, 20, pp. 2615– 2624. DOI:10.1016/j.jiec.2013.10.049
  9. Herrera-González, A.M., Reyes-Angeles, M.C. & Peláez-Cid, A.A. (2021). Adsorption of anionic dyes using composites based on basic polyelectrolytes and physically activated carbon. Desalination and Water Treatment, 230, 346–358. DOI:10.5004/dwt.2021.27445
  10. Izadyar, S. & Rahimi, M. (2007). Use of beech wood sawdust for adsorption of textile dyes. Pakistan Journal of Biological Sciences, 10, 2, pp. 287–293.
  11. Kajjumba, G.W., Emik, S., Öngen, A., Özcan, H.K. & Aydın, S. (2018). Modelling of adsorption kinetic processes – errors, theory and application. [in:] Advanced sorption process applications, Edebali, S. (Ed), IntechOpen, Rijeka, pp. 1–19.
  12. Kaushik, C.P., Tuteja, R., Kaushik, N. & Sharma, J.K. (2009). Minimization of organic chemical load in direct dyes effluent using low cost adsorbents. Chemical Engineering Journal, 155, pp. 234–240. DOI: 10.1016/j.cej.2009.07.042
  13. Konicki, W., Hełminiak, A., Arabczyk, W. & Mijowska, E. (2017). Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. Journal of Colloid and Interface Science, 497, pp. 155–164. DOI:10.1016/j.jcis.2017.03.008
  14. Kreiner, K. & Żyła, M. (2006). Binarny charakter powierzchni węgla kamiennego. Górnictwo i Geoinżynieria, 30, 2, pp. 19–34.
  15. Kuśmierek, K., Gałan, M., Kamiński, W. & Świątkowski, A. (2020a). Use of sawdust as a low-cost sorbent for the removal of azo dyes from water. Przemysl Chemiczny, 99, 2, pp. 201–205. DOI:10.15199/62.2020.2.2
  16. Kuśmierek, K., Świątkowski, A., Wierzbicka, E. & Legocka, I. (2020b). Enhanced adsorption of Direct Orange 26 dye in aqueous solutions by modified halloysite. Physicochemical Problems of Mineral Processing, 56, 4, pp. 693–701. DOI:10.37190/ppmp/124544
  17. Kuśmierek, K., Zarębska, K. & Świątkowski, A. (2016). Hard coal as a potential low-cost adsorbent for removal of 4-chlorophenol from water. Water Science & Technology, 73, 8, pp. 2025–2030. DOI:10.2166/wst.2016.046
  18. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. & Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3, pp. 275–290. DOI:10.1016/j.biori.2019.09.001
  19. de Mattos, N.R., de Oliveira, C.R., Camargo, L.G.B., da Silva, R.S.R. & Lavall, R.L. (2019). Azo dye adsorption on anthracite: a view of thermodynamics, kinetics and cosmotropic effects. Separation and Purification Technology, 209, pp. 806-814. DOI:10.1016/j.seppur.2018.09.027
  20. O'Keefe, J.M.K., Bechtel, A., Christanis, K., Dai, S., DiMichele, W.A., Eble, C.F., Esterle, J.S., Mastalerz, M., Raymond, A.L., Valentim, B.V., Wagner, N.J., Ward, C.R. & Hower, J.C. (2013). On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118, pp. 58–87. DOI:10.1016/j.coal.2013.08.007
  21. Rafique, M.A., Kiran, S., Ashraf, A., Mukhtar, N., Rizwan, S., Ashraf, M. & Arshad, M.Y. (2022). Effective removal of Direct Orange 26 dye using copper nanoparticles synthesized from Tilapia fish scales. Global NEST Journal, 24, 2, pp. 311–l 317. DOI:10.30955/gnj.004234
  22. Rusu, L., Harja, M,. Simion, A.I., Suteu, D., Ciobanu, G. & Favier, L. (2014). Removal of Astrazone Blue from aqueous solutions onto brown peat. Equilibrium and kinetics studies. Korean Journal of Chemical Engineering, 31, 6, pp. 1008–1015. DOI:10.1007/s11814-014-0009-3
  23. Safa, Y. & Bhatti, H.N. (2011). Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination, 272, pp. 313–322. DOI:10.1016/j.desal.2011.01.040
  24. Safa, Y., Bhatti, H.N., Bhatti, I.A. & Asgher, M. (2011). Removal of Direct Red-31 and Direct Orange-26 by low cost rice husk: Influence of immobilisation and pretreatments. Canadian Journal of Chemical Engineering, 89, pp. 1554–1565. DOI:10.1002/cjce.20473
  25. Sepulveda, L., Fernandez, K., Contreras, E. & Palma, C. (2004). Adsorption of dyes using peat: equilibrium and kinetic studies. Environmental Technology, 25, pp. 987–996. DOI:10.1080/09593332508618390
  26. Sočo, E., Pająk, D. & Kalembkiewicz, J. (2020). Multi-component sorption and utilization of solid waste to simultaneous removing basic dye and heavy metal from aqueous system. Archives of Environmental Protection, 46, pp. 62-75. DOI:10.24425/aep.2020.132527
  27. Tan, K.L. & Hameed, B.H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, pp. 25–48. DOI:10.1016/j.jtice.2017.01.024
  28. Tarasevich, Y.I. (2001). Porous structure and adsorption properties of natural porous coal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 176, pp. 267–272. DOI:10.1016/S0927-7757(00)00702-0
  29. Tomczak, E. & Blus, M. (2016). Sorption dynamics of Direct Orange 26 dye onto a corncob plant sorbent. Ecological Chemistry and Engineering S, 23, 1, pp. 175–185. DOI:10.1515/eces-2016-0012
  30. Tomczak, E. & Tosik, P. (2014). Sorption equilibrium of azo dyes Direct Orange 26 and Reactive Blue 81 onto a cheap plant sorbent. Ecological Chemistry and Engineering S, 21, 3, pp. 435–445. DOI:10.2478/eces-2014-0032
  31. Venkata Mohan, S., Chandrasekhar Rao, N. & Karthikeyan, J. (2002). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. Journal of Hazardous Materials, B90, pp. 189–204. DOI:10.1016/S0304-3894(01)00348-X
  32. Wani, K.A., Jangid, N.K. & Bhat, A.R. (2020), Impact of textile dyes on public health and the environment, IGI Global, Hershey, USA.
Go to article

Authors and Affiliations

Krzysztof Kuśmierek
1
ORCID: ORCID
Lidia Dąbek
2
Andrzej Świątkowski
1
ORCID: ORCID

  1. Institute of Chemistry, Military University of Technology, Warsaw, Poland
  2. Faculty of Environmental Engineering, Geomatics and Renewable Energy,Kielce University of Technology, Poland

This page uses 'cookies'. Learn more