Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the measurement of vibrational properties of sundatang soundboard. Sundatang is a plucked stringed traditional musical instrument that is popular among the Kadazandusun communities in Sabah, Malaysia. The vibrational properties of the soundboard are measured using CADA-X impact hammering system in a condition where the instrument is without any string. There are two types of sundatang used in this study; one made from acacia and the other from vitex wood. In this measurement, frequency response functions (FRFs) and modal parameters of the top plate and back plate of this instrument are obtained. It is found that in free edge, fundamental frequency of both plates of acacia sundatang is greater than the vitex sundatang in a range of 112 Hz to 230 Hz. However, in clamped edge (attached to its ribs), it was modified to a lower frequency and closer to each other in the range of 55 Hz to 59 Hz. Another finding is the detection of the excitation of similar mode shape at different resonance frequencies. This phenomenon is termed as Different State of Mode (DSM) which is observed may be because the number of testing points is not enough. Findings of this study provide important information to the study of quality development of this instrument

Go to article

Authors and Affiliations

Ronald Yusri Batahong
Jedol Dayou
Semyung Wang
Jongsuh Lee
Download PDF Download RIS Download Bibtex

Abstract

The sompoton is one of famous traditional musical instruments in Sabah. This instrument consists of several parts with the vibrator being the most important one. In this paper, the vibrator is modeled as a clamped bar with a uniformly distributed mass. By means of this model, the fundamental frequency is analyzed with the use of an equivalent single degree of freedom system (SDOF) and exact analysis. The vibrator is made of aluminum in different sizes and is excited using a constant air jet to obtain its fundamental resonance frequency. The fundamental frequency obtained from the experimental measurement is compared with the theoretical values calculated based on the equivalent SDOF and exact analysis theories. It is found that the exact analysis gives a closer value to the experimental results as compared to the SDOF system. Although both the experimental and theoretical results exhibit the same trend, they are different in magnitude. To overcome the differences in both theories, a correction factor is added to account for the production errors.
Go to article

Authors and Affiliations

Tee Hao Wong
Jedol Dayou
M.C.D. Ngu
Jackson H.W. Chang
Willey Y.H. Liew

This page uses 'cookies'. Learn more