Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The hybridization of a recently suggested Harris hawk’s optimizer (HHO) with the traditional particle swarm optimization (PSO) has been proposed in this paper. The velocity function update in each iteration of the PSO technique has been adopted to avoid being trapped into local search space with HHO. The performance of the proposed Integrated HHO-PSO (IHHOPSO) is evaluated using 23 benchmark functions and compared with the novel algorithms and hybrid versions of the neighbouring standard algorithms. Statistical analysis with the proposed algorithm is presented, and the effectiveness is shown in the comparison of grey wolf optimization (GWO), Harris hawks optimizer (HHO), barnacles matting optimization (BMO) and hybrid GWO-PSO algorithms. The comparison in convergence characters with the considered set of optimization methods also presented along with the boxplot. The proposed algorithm is further validated via an emerging engineering case study of controller parameter tuning of power system stability enhancement problem. The considered case study tunes the parameters of STATCOM and power system stabilizers (PSS) connected in a sample power network with the proposed IHHOPSO algorithm. A multi-objective function has been considered and different operating conditions has been investigated in this papers which recommends proposed algorithm in an effective damping of power network oscillations.
Go to article

Bibliography

[1] M. Crepinsek, S.-H. Liu, and L. Mernik: A note on teaching–learningbased optimization algorithm. Information Sciences, 212 (2012), 79–93, DOI: 10.1016/j.ins.2012.05.009.
[2] Anita and A. Yadav: AEFA: Artificial electric field algorithm for global optimization. Swarm and Evolutionary Computation, 48 (2019), 93–108, DOI: 10.1016/j.swevo.2019.03.013.
[3] R. Devarapalli and B. Bhattacharyya: A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer parameter tuning in a multimachine power system. Optimal Control Applications and Methods, 41(4), (2020), 1143-1159, DOI: 10.1002/oca.2591.
[4] M. Jain, V. Singh, and A. Rani: A novel nature-inspired algorithm for optimization: Squirrel search algorithm, Swarmand Evolutionary Computation, 44 (2019), 148–175, DOI: 10.1016/j.swevo.2018.02.013.
[5] A.E. Eiben and J.E. Smith: What is an Evolutionary Algorithm? In Introduction to Evolutionary Computing, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, 25–48, DOI: 10.1007/978-3-662-44874-8_3.
[6] A. Kaveh and M. Khayatazad: A new meta-heuristic method: Ray Optimization. Computers & Structures, 112–113, (2012), 283–294, DOI: 10.1016/j.compstruc.2012.09.003.
[7] P.J.M. van Laarhoven and E.H.L. Aarts: Simulated annealing. In Simulated Annealing: Theory and Applications, P.J.M. van Laarhoven and E.H.L. Aarts, Eds. Dordrecht: Springer Netherlands, 1987, 7–15, DOI: 10.1007/978-94-015-7744-1_2.
[8] Agenetic algorithm tutorial. SpringerLink. https://link.springer.com/article/10.1007/BF00175354 (accessed Mar. 20, 2020).
[9] J. Kennedy and R. Eberhart: Particle Swarm Optimization. Proc. of ICNN’95 International Conference on Neural Networks, 4 (1995), 1942– 1948.
[10] M. Neshat, G. Sepidnam, M. Sargolzaei, and A.N. Toosi: Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42(4), (2014), 965–997, DOI: 10.1007/s10462-012-9342-2.
[11] M. Dorigo, M. Birattari, and T. Stutzle: Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), (2006), 28–39, DOI: 10.1109/ MCI.2006.329691.
[12] M. Roth and S. Wicker: Termite: ad-hoc networking with stigmergy. In GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489), 5 (2003), 2937–2941, DOI: 10.1109/GLOCOM.2003.1258772.
[13] D. Karaboga and B. Akay: A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), (2009), 108– 132, DOI: 10.1016/j.amc.2009.03.090.
[14] A. Mucherino and O. Seref: Monkey search: a novel metaheuristic search for global optimization. AIP Conference Proceedings, 953(1), (2007), 162– 173, DOI: 10.1063/1.2817338.
[15] E.Atashpaz-Gargari and C. Lucas: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation, (2007), 4661–4667, DOI: 10.1109/CEC.2007.4425083.
[16] D. Simon: Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), (2008), 702–713, DOI: 10.1109/TEVC.2008.919004.
[17] X.-S. Yang: Firefly algorithm. Stochastic, test, functions and design optimisation. arXiv:1003.1409 [math], Mar. 2010, Accessed: Mar. 20, 2020. [Online]. Available: http://arxiv.org/abs/1003.1409.
[18] K.M.Gates and P.C.M. Molenaar: Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), (2012), 310–319, DOI: 10.1016/j.neuroimage.2012.06.026.
[19] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi: GSA: A gravitational search algorithm. Information Sciences, 179(13), (2009), 2232–2248, DOI: 10.1016/j.ins.2009.03.004.
[20] Y. Tan andY. Zhu: Fireworks Algorithm for Optimization. In: TanY., ShiY., Tan K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, 6145, Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-13495-1_44.
[21] X.-S. Yang: Bat algorithm for multi-objective optimisation. arXiv: 1203. 6571 [math], Mar. 2012, Accessed: Mar. 20, 2020. [Online]. Available: http://arxiv.org/abs/1203.6571.
[22] LingWang, Xiao-long Zheng, and Sheng-yaoWang:Anovel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem. Knowledge-Based Systems, 48 17–23, (2013), DOI: 10.1016/j.knosys.2013.04.003.
[23] X.-S. Yang: Flower Pollination Algorithm for Global Optimization. In Unconventional Computation and Natural Computation, Berlin, Heidelberg, 2012, 240–249, DOI: 10.1007/978-3-642-32894-7_27.
[24] G.-G. Wang, L. Guo, A.H. Gandomi, G.-S. Hao, and H. Wang: Chaotic Krill Herd algorithm. Information Sciences, 274 (2014), 17–34, DOI: 10.1016/j.ins.2014.02.123.
[25] A. Kaveh and N. Farhoudi: A new optimization method: Dolphin echolocation. Advances in Engineering Software, 59 (2013), 53–70, DOI: 10.1016/ j.advengsoft.2013.03.004.
[26] S. Mirjalili, S.M. Mirjalili, and A. Lewis: GreyWolf optimizer. Advances in Engineering Software, 69 (2014), 46–61, DOI: 10.1016/j.advengsoft.2013.12.007.
[27] A. Hatamlou: Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222 (2013), 175–184, DOI: 10.1016/ j.ins.2012.08.023.
[28] A. Sadollah, A. Bahreininejad, H. Eskandar and M. Hamdi: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problem. Applied Soft Computing, 13(5), (2013), 2592–2612, DOI: 10.1016/j.asoc.2012.11.026.
[29] S. Mirjalili: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), (2016), 1053–1073, DOI: 10.1007/s00521-015-1920-1.
[30] S. Mirjalili: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89 (2015), 228–249, DOI: 10.1016/j.knosys.2015.07.006.
[31] F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, and S. Mirjalili: Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101 (2019), 646–667, DOI: 10.1016/j.future.2019.07.015.
[32] S. Mirjalili: The ant lion optimizer. Advances in Engineering Software, 83 (2015), 80–98, DOI: 10.1016/j.advengsoft.2015.01.010.
[33] H. Shareef, A.A. Ibrahim, and A.H. Mutlag: Lightning search algorithm. Applied Soft Computing, 36 (2015), 315–333, DOI: 10.1016/j.asoc.2015.07.028.
[34] S.A. Uymaz, G. Tezel, and E. Yel: Artificial algae algorithm (AAA) for nonlinear global optimization. Applied Soft Computing, 31 (2015), 153–171, DOI: 10.1016/j.asoc.2015.03.003.
[35] M.D. Li, H. Zhao, X.W. Weng, and T. Han: A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92 (2016), 65–88, DOI: 10.1016/j.advengsoft.2015.11.004.
[36] O. Abedinia, N. Amjady, and A. Ghasemi: A new metaheuristic algorithm based on shark smell optimization. Complexity, 21(5), (2016), 97–116, DOI: 10.1002/cplx.21634.
[37] S. Mirjalili, S.M. Mirjalili, and A. Hatamlou: Multi-Verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), (2016), 495–513, DOI: 10.1007/s00521-015-1870-7.
[38] S. Mirjalili and A. Lewis: The whale optimization algorithm. Advances in Engineering Software, 95 (2016), 51–67, DOI: 10.1016/j.advengsoft. 2016.01.008.
[39] A. Askarzadeh: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169 (2016), 1–12, DOI: 10.1016/j.compstruc.2016.03.001.
[40] T. Wu, M. Yao, and J. Yang: Dolphin swarm algorithm. Frontiers of Information Technology & Electronic Engineering, 17(8), (2016), 717–729, DOI: 10.1631/FITEE.1500287.
[41] S. Mirjalili: SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96 (2016), 120–133, DOI: 10.1016/j.knosys.2015.12.022.
[42] A. Kaveh and A. Dadras: A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Advances in Engineering Software, 110, (2017), 69–84, DOI: 10.1016/j.advengsoft.2017.03.014.
[43] M.M. Mafarja, I. Aljarah, A. Asghar Heidari, A.I. Hammouri, H. Faris, Ala’M. Al-Zoubi, and S. Mirjalili: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowledge-Based Systems, 145 (2018), 25–45, DOI: 10.1016/j.knosys.2017.12.037.
[44] A. Tabari and A. Ahmad: A new optimization method: Electro-search algorithm. Computers and Chemical Engineering, 103 (2017), 1–11, DOI: 10.1016/j.compchemeng.2017.01.046.
[45] G. Dhiman and V. Kumar: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114 (2017), 48–70, DOI: 10.1016/j.advengsoft. 2017.05.014.
[46] S.-A. Ahmadi: Human behavior-based optimization: a novel metaheuristic approach to solve complex optimization problems. Neural Comput and Applications, 28(S1), (2017), 233–244, DOI: 10.1007/s00521-016-2334-4.
[47] A.F. Nematollahi, A. Rahiminejad, and B. Vahidi: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Applied Soft Computing, 59 (2017), 596–621, DOI: 10.1016/j.asoc.2017.06.033.
[48] R.A. Ibrahim, A.A. Ewees, D. Oliva, M. Abd Elaziz, and S. Lu: Improved salp swarm algorithm based on particle swarm optimization for feature selection. Journal of Ambient Intelligence and Humanized Computing, 10(8), (2019), 3155–3169, DOI: 10.1007/s12652-018-1031-9.
[49] E. Jahani and M. Chizari: Tackling global optimization problems with a novel algorithm – Mouth brooding fish algorithm. Applied Soft Computing, 62 (2018), 987–1002, DOI: 10.1016/j.asoc.2017.09.035.
[50] X. Qi, Y. Zhu, and H. Zhang: A new meta-heuristic butterfly-inspired algorithm. Journal of Computational Science, 23 (2017), 226–239, DOI: 10.1016/j.jocs.2017.06.003.
[51] S. Mirjalili: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89 (2015), 228–249, DOI: 10.1016/j.knosys.2015.07.006.
[52] M. Dorigo, V. Maniezzo, and A. Colorni: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), (1996), 29–41, DOI: 10.1109/3477.484436.
[53] S. Mirjalili and S.Z.M. Hashim: A new hybrid PSOGSA algorithm for function optimization. In 2010 International Conference on Computer and Information Application, (2010), 374–377, DOI: 10.1109/ICCIA.2010.6141614.
[54] F.A. Senel, F. Gokce, A.S. Yuksel, and T. Yigit: A novel hybrid PSO– GWO algorithm for optimization problems. Engineering with Computers, 35(4), 1359–1373, DOI: 10.1007/s00366-018-0668-5.
[55] D.T. Bui, H. Moayedi, B. Kalantar, and A. Osouli: Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility. Sensors, 19(14), (2019), 3590, DOI: 10.3390/s19163590.
[56] H. Chen, S. Jiao, M.Wang, A.A. Heidari, and X. Zhao: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. Journal of Cleaner Production, 244 (2020), p. 118778, DOI: 10.1016/j.jclepro.2019.118778.
[57] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen: Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97 (2019), 849–872, DOI: 10.1016/ j.future.2019.02.028.
[58] M. Jamil and X.-S. Yang: A literature survey of benchmark functions for global optimization problems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), (2013), 150, DOI: 10.1504/IJMMNO.2013.055204.
[59] A. Kaveh and S. Talatahari: A novel heuristic optimization method: charged system search. Acta Mechanica, 213(3–4), (2010), 267–289, DOI: 10.1007/s00707-009-0270-4.
[60] J. Luo and B. Shi: Ahybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Applied Intelligence, 49(5), (2000), 1982–2000, DOI: 10.1007/s10489-018-1362-4.
[61] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen: Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97 (2019), 849–872, DOI: 10.1016/ j.future.2019.02.028.
[62] P. Pruski and S. Paszek: Location of generating units most affecting the angular stability of the power system based on the analysis of instantaneous power waveforms. Archives of Control Sciences, 30(2), (2020), 273–293, DOI: 10.24425/acs.2020.133500.
[63] M.M. Hossain and A.Z. Khurshudyan: Heuristic control of nonlinear power systems: Application to the infinite bus problem. Archives of Control Sciences, 29(2), (2019), 279–288, DOI: 10.24425/acs.2019.129382.
[64] R. Devarapalli and B. Bhattacharyya:Aframework for H2=H? synthesis in damping power network oscillations with STATCOM. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44 (2020), 927-948, DOI: 10.1007/s40998-019-00278-4.
[65] G. Gurrala and I. Sen: Power system stabilizers design for interconnected power systems. IEEE Transactions on Power Systems, 25(2), (2010), 1042– 1051, DOI: 10.1109/TPWRS.2009.2036778.
[66] R.K. Varma: Introduction to FACTS controllers. In 2009 IEEE/PES Power Systems Conference and Exposition, (2009), 1–6, DOI: 10.1109/PSCE.2009.4840114.
[67] P. Kundur: Power System Stability and Control. Tata McGraw-Hill Education, 1994.
[68] M. Belazzoug, M. Boudour, and K. Sebaa: FACTS location and size for reactive power system compensation through the multi-objective optimization. Archives of Control Sciences, 20(4), (2010), 473–489, DOI: 10.2478/v10170-010-0027-2
Go to article

Authors and Affiliations

Ramesh Devarapalli
1
ORCID: ORCID
Vikash Kumar
1

  1. Department of Electrical Engineering, B.I.T. Sindri, Dhanbad, Jharkhand, India
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an automatic voltage regulator (AVR) embedded with fractional order PID (FOPID) is employed for the alternator terminal voltage control. A novel meta-heuristic technique, a modified version of grey wolf optimizer (mGWO) is proposed to design and optimize the FOPID AVR system. The parameters of FOPID, namely, proportional gain ( Κ Ρ), the integral gain ( Κ I), the derivative gain ( Κ D), λ and μ have been optimally tuned with the proposed mGWO technique using a novel fitness function. The initial values of the Κ Ρ, Κ I , and Κ D of the FOPID controller are obtained using Ziegler-Nichols (ZN) method, whereas the initial values of λ and μ have been chosen as arbitrary values. The proposed algorithm offers more benefits such as easy implementation, fast convergence characteristics, and excellent computational ability for the optimization of functions with more than three variables. Additionally, the hasty tuning of FOPID controller parameters gives a high-quality result, and the proposed controller also improves the robustness of the system during uncertainties in the parameters. The quality of the simulated result of the proposed controller has been validatedby other state-of-the-art techniques in the literature.
Go to article

Authors and Affiliations

Santosh Kumar Verma
1
Ramesh Devarapalli
2
ORCID: ORCID

  1. Department of EIE, Assam Energy Institute, Sivasagar (Centre of RGIPT, Jais), Assam–785697, India
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present optimal control formulation and numerical algorithm for fractional order discrete time singular system (DTSS) for fixed terminal state and fixed terminal time endpoint condition. The performance index (PI) is in quadratic form, and the system dynamics is in the sense of Riemann-Liouville fractional derivative (RLFD). A coordinate transformation is used to convert the fractional-order DTSS into its equivalent non-singular form, and then the optimal control problem (OCP) is formulated. The Hamiltonian technique is used to derive the necessary conditions. A solution algorithm is presented for solving the OCP. To validate the formulation and the solution algorithm, an example for fixed terminal state and fixed terminal time case is presented.
Go to article

Bibliography

[1] G.W. Leibniz and C.I. Gerhardt: Mathematische Schriften. Hildesheim, G. Olms, 1962.
[2] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. 1st edition, 198. San Diego, Academic Press, 1998.
[3] J.A. Tenreiro Machado et al.: Some applications of fractional calculus in engineering. Mathematical Problems in Engineering, 2010, (2009), p. e639801, DOI: 10.1155/2010/639801.
[4] T. Yuvapriya, P. Lakshmi, and S. Rajendiran: Vibration control and performance analysis of full car active suspension system using fractional order terminal sliding mode controller. Archives of Control Sciences, 30(2), (2020), 295–324, DOI: 10.24425/ACS.2020.133501.
[5] D.S. Naidu: Optimal Control Systems. 1st edition, CRC Press, 2018.
[6] O.P. Agrawal: A general formulation and solution scheme for fractional optimal Control problems. Nonlinear Dynamics, 38(1), (2004), 323–337, DOI: 10.1007/s11071-004-3764-6.
[7] T. Chiranjeevi and R.K. Biswas: Formulation of optimal control problems of fractional dynamic systems with control constraints. Journal of Advanced Research in Dynamical and Control Systems, 10(3), (2018), 201–212.
[8] R.K. Biswas and S. Sen: Fractional optimal control problems with specified final time. Journal of Computational and Nonlinear Dynamics, 6(021009), (2010), DOI: 10.1115/1.4002508.
[9] R.K. Biswas and S. Sen: Free final time fractional optimal control problems. Journal of the Franklin Institute, 351(2), (2014), 941–951, DOI: 10.1016/j.jfranklin.2013.09.024.
[10] R.K. Biswas and S. Sen: Numerical method for solving fractional optimal control problems. In: Proceedings of the ASME IDETC/CIE Conference, (2010), 1205–120, DOI: 10.1115/DETC2009-87008.
[11] C. Tricaud and Y. Chen: An approximate method for numerically solving fractional order optimal control problems of general form. Computers & Mathematics with Applications, 59(5), (2010), 1644–1655, DOI: 10.1016/j.camwa.2009.08.006.
[12] Y. Ding, Z. Wang, and H. Ye: Optimal control of a fractional-order HIVimmune system with memory. IEEE Transactions on Control Systems Technology, 20(3), (2012), 763–769, DOI: 10.1109/TCST.2011.2153203.
[13] T. Chiranjeevi and R.K. Biswas: Closed-form solution of optimal control problem of a fractional order system. Journal of King Saud University – Science, 31(4), (2019), 1042–1047, DOI: 10.1016/j.jksus.2019.02.010.
[14] R. Dehghan and M. Keyanpour: A semidefinite programming approach for solving fractional optimal control problems. Optimization, 66(7), (2017), 1157–1176, DOI: 10.1080/02331934.2017.1316501.
[15] M. Dehghan, E.-A. Hamedi, and H. Khosravian-Arab: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. Journal of Vibration and Control, 22(6), (2016), 1547–1559, DOI: 10.1177/1077546314543727.
[16] S. Yousefi, A. Lotfi, and M. Dehghan: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. Journal of Vibration and Control, 17(13), (2011), 2059–2065, DOI: 10.1177/1077546311399950.
[17] M. Gomoyunov: Optimal control problems with a fixed terminal time in linear fractional-order systems. Archives of Control Sciences, 30(2), (2019), 295–324, DOI: 10.24425/acs.2020.135849.
[18] T. Chiranjeevi and R.K. Biswas: Discrete-time fractional optimal control. Mathematics, 5(2), (2017), DOI: 10.3390/math5020025.
[19] A. Dzielinski and P.M. Czyronis: Fixed final time and free final state optimal control problem for fractional dynamic systems – linear quadratic discrete-time case. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(3), (2013), 681–690, DOI: 10.2478/bpasts-2013-0072.
[20] T. Chiranjeevi, R.K. Biswas, and N.R. Babu: Effect of initialization on optimal control problem of fractional order discrete-time system. Journal of Interdisciplinary Mathematics, 23(1), (2020), 293–302, DOI: 10.1080/09720502.2020.1721924.
[21] P.M. Czyronis: Dynamic programming problem for fractional discretetime dynamic systems. Quadratic index of performance case. Circuits, Systems, and Signal Processing, 33(7), 2131–2149, DOI: 10.1007/s00034-014-9746-0.
[22] J.J. Trujillo and V.M. Ungureanu: Optimal control of discrete-time linear fractional order systems with multiplicative noise. International Journal of Control, 91(1), (2018), 57–69, DOI: 10.1080/00207179.2016.1266520.
[23] A. Ruszewski: Stability of discrete-time fractional linear systems with delays. Archives of Control Sciences, 29(3), (2019), 549–567, DOI: 10.24425/acs.2019.130205.
[24] L.Dai: Singular Control Systems. Berlin Heidelberg, Springer-Verlag, 1989, DOI: 10.1007/BFb0002475.
[25] R.K. Biswas and S. Sen: Fractional optimal control problems: a pseudostate- space approach. Journal of Vibration and Control, 17(7), (2011), 1034–1041, DOI: 10.1177/1077546310373618.
[26] R.K. Biswas and S. Sen: Fractional optimal control within Caputo’s derivative. In: Proceedings of the ASME IDETC/CIE Conference, (2012), 353– 360, DOI: 10.1115/DETC2011-48045.
[27] T. Chiranjeevi, R.K. Biswas, and C. Sethi: Optimal control of fractional order singular system. The International Journal of Electrical Engineering & Education, p. 0020720919833031, (2019), DOI: 10.1177/0020720919833031.
[28] T. Chiranjeevi and R.K. Biswas: Numerical approach to the fractional optimal control problem of continuous-time singular system. In: Advances in Electrical Control and Signal Systems, Singapore, (2020), 239–248, DOI: 10.1007/978-981-15-5262-5_16.
[29] T. Chiranjeevi and R.K. Biswas: Linear quadratic optimal control problem of fractional order continuous-time singular system. Procedia Computer Science, 171 (2020), 1261–1268, DOI: 10.1016/j.procs.2020.04.134.
[30] M.R.A. Moubarak, H.F. Ahmed, and O. Khorshi: Numerical solution of the optimal control for fractional order singular systems. Differential Equations and Dynamical Systems, 26(1), (2018), 279–291, DOI: 10.1007/s12591-016-0320-z.
[31] T. Chiranjeevi, R.K. Biswas, and S.K. Pandey: Fixed final time and fixed final state linear quadratic optimal control problem of fractional order singular system. In: Computing Algorithms with Applications in Engineering, Singapore, (2020), 285–294. DOI: 10.1007/978-981-15-2369-4_24.
[32] Muhafzan, A. Nazra, L. Yulianti, Zulakmal, and R. Revina: On LQ optimization problem subject to fractional order irregular singular systems. Archives of Control Sciences, 30(4), (2020), 745–756, DOI: 10.24425/acs.2020.135850.
[33] T. Chiranjeevi and R.K. Biswas: Computational method based on reflection operator for solving a class of fractional optimal control problem. Procedia Computer Science, 171 (2020), 2030–2039, DOI: 10.1016/j.procs.2020.04.218.
[34] T. Chiranjeevi and R.K. Biswas: Numerical simulation of fractional order optimal control problem. Journal of Statistics and Management Systems, 23(6), (2020), 1069–1077, DOI: 10.1080/09720510.2020.1800188.
[35] T. Kaczorek: Singular fractional continuous-time and discrete-time linear systems. Acta Mechanica et Automatica, 7(1), (2013), 26–33, DOI: 10.2478/ama-2013-0005.
[36] T. Kaczorek: Selected Problems of Fractional Systems Theory. Berlin Heidelberg, Springer-Verlag, 2011, DOI: 10.1007/978-3-642-20502-6.
[37] T. Kaczorek: Polynomial and Rational Matrices: Applications in Dynamical Systems Theory. London, Springer-Verlag, 2007, DOI: 10.1007/978-1-84628-605-6.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Raj Kumar Biswas
2
Ramesh Devarapalli
3
ORCID: ORCID
Naladi Ram Babu
2
Fausto Pedro García Márquez
4

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U. P., India
  2. Department of Electrical Engineering, National Institute of Technology, Silchar, India
  3. Department of Electrical Engineering, BIT Sindri, Dhanbad 828123, Jharkhand, India
  4. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an algorithm and optimization procedure for the optimization of the outer rotor structure of the brushless DC (BLDC) motor. The optimization software was developed in the Delphi Tiburón development environment. The optimization procedure is based on the salp swarm algorithm. The effectiveness of the developed optimization procedurewas compared with genetic algorithm and particle swarmoptimization algorithm. The mathematical model of the device includes the electromagnetic field equations taking into account the non-linearity of the ferromagnetic material, equations of external supply circuits and equations of mechanical motion. The external penalty function was introduced into the optimization algorithm to take into account the non-linear constraint function.
Go to article

Authors and Affiliations

Łukasz Knypiński
1
ORCID: ORCID
Ramesh Devarapalli
2
ORCID: ORCID
Yvonnick Le Menach
3
ORCID: ORCID

  1. Poznan University of Technology, Poland
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram, India
  3. Lille University, France
Download PDF Download RIS Download Bibtex

Abstract

The current task explores automatic generation control knowledge under old-style circumstances for a triple-arena scheme. Sources in area-1 are thermal-solar thermal (ST); thermalgeothermal power plant (GPP) in area-2 and thermal-hydro in area-3. An original endeavour has been set out to execute a new performance index named hybrid peak area integral squared error (HPA-ISE) and two-stage controller with amalgamation of proportional-integral and fractional order proportional-derivative, hence named as PI(FOPD). The performance of PI(FOPD) has been compared with varied controllers like proportional-integral (PI), proportional-integralderivative (PID). Various investigation express excellency of PI(FOPD) controller over other controller from outlook regarding lessened level of peak anomalies and time duration for settling. Thus, PI(FOPD) controller’s excellent performance is stated when comparison is undergone for a three-area basic thermal system. The above said controller’s gains and related parameters are developed by the aid of Artificial Rabbit Optimization (ARO). Also, studies with HPA-ISE enhances system dynamics over ISE. Moreover, a study on various area capacity ratios (ACR) suggests that high ACR shows better dynamics. The basic thermal system is united with renewable sources ST in area-1 also GPP in area-2. Also, hydro unit is installed in area-3. The performance of this new combination of system is compared with the basic thermal system using PI(FOPD) controller. It is detected that dynamic presentation of new system is improved. Action in existence of redox flow battery is also examined which provides with noteworthy outcome. PI(FOPD) parameters values at nominal condition are appropriate for higher value of disturbance without need for optimization.
Go to article

Authors and Affiliations

Arindita Saha
1
Tirumalasetty Chiranjeevi
2
Ramesh Devarapalli
3
ORCID: ORCID
Naladi Ram Babu
4
Puja Dash
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, RegentEducation & Research Foundation Group of Institutions, Kolkata, West Bengal, India
  2. Department of ElectricalEngineering, Rajkiya Engineering College Sonbhadra, U.P., India
  3. Institute of Chemical Technology, IndianOil Odisha Campus, Bhubaneswar, India
  4. Department of Electrical & Electronics Engineering,Aditya Engineering College, Surampalem, Andhra Pradesh, India
  5. Department of Electrical and Electronics Engineering,Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh,India
  6. Ingenium ResearchGroup, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

In recent, modeling practical systems as interval systems is gaining more attention of control researchers due to various advantages of interval systems. This research work presents a new approach for reducing the high-order continuous interval system (HOCIS) utilizing improved Gamma approximation. The denominator polynomial of reduced-order continuous interval model (ROCIM) is obtained using modified Routh table, while the numerator polynomial is derived using Gamma parameters. The distinctive features of this approach are: (i) It always generates a stable model for stable HOCIS in contrast to other recent existing techniques; (ii) It always produces interval models for interval systems in contrast to other relevant methods, and, (iii) The proposed technique can be applied to any system in opposite to some existing techniques which are applicable to second-order and third-order systems only. The accuracy and effectiveness of the proposed method are demonstrated by considering test cases of single-inputsingle- output (SISO) and multi-input-multi-output (MIMO) continuous interval systems. The robust stability analysis for ROCIM is also presented to support the effectiveness of proposed technique.
Go to article

Bibliography

[1] A.S.S. Abadi, P.A. Hosseinabadi, S.Mekhilef and A. Ordys: A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems. Archives of Control Sciences, 30(3), (2020), 599–620, DOI: 10.24425/acs.2020.134679.
[2] A. Gupta, R. Saini, and M. Sharma: Modelling of hybrid energy system— part i: Problem formulation and model development. Renewable Energy, 36(2), (2011), 459–465, DOI: 10.1016/j.renene.2010.06.035.
[3] S. Singh, V. Singh, and V. Singh: Analytic hierarchy process based approximation of high-order continuous systems using tlbo algorithm. International Journal of Dynamics and Control, 7(1), (2019), 53–60, DOI: 10.1504/IJSCC.2020.105393.
[4] J. Hu, Y. Yang, M. Jia, Y. Guan, C. Fu, and S. Liao: Research on harmonic torque reduction strategy for integrated electric drive system in pure electric vehicle. Electronics, 9(8), (2020), DOI: 10.3390/electronics9081241.
[5] K. Takahashi, N. Jargalsaikhan, S. Rangarajan, A. M. Hemeida, H. Takahashi and T. Senjyu: Output control of three-axis pmsg wind turbine considering torsional vibration using h infinity control. Energies, 13(13), (2020), DOI: 10.3390/en13133474.
[6] V. Singh, D.P.S. Chauhan, S.P. Singh, and T. Prakash: On time moments and markov parameters of continuous interval systems. Journal of Circuits, Systems and Computers, 26(3), (2017), DOI: 10.1142/S0218126617500384.
[7] B. Pariyar and R.Wagle: Mathematical modeling of isolated wind-dieselsolar photo voltaic hybrid power system for load frequency control. arXiv preprint arXiv:2004.05616, (2020).
[8] N. Karkar, K. Benmhammed, and A. Bartil: Parameter estimation of planar robot manipulator using interval arithmetic approach. Arabian Journal for Science and Engineering, 39(6), (2014), 5289–5295, DOI: 10.1007/s13369-014-1199-z.
[9] F.P.G. Marquez: A new method for maintenance management employing principal component analysis. Structural Durability & Health Monitoring, 6(2), (2010), DOI: 10.3970/sdhm.2010.006.089.
[10] F.P.G. Marquez: An approach to remote condition monitoring systems management. IET International Conference on Railway Condition Monitoring, (2006), 156–160, DOI: 10.1049/ic:20060061.
[11] D. Li, S. Zhang, andY. Xiao: Interval optimization-based optimal design of distributed energy resource systems under uncertainties. Energies, 13(13), (2020), DOI: 10.3390/en13133465.
[12] A.K. Choudhary and S.K. Nagar: Order reduction in z-domain for interval system using an arithmetic operator. Circuits, Systems, and Signal Processing, 38(3), (2019), 1023–1038, DOI: 10.1007/s00034-018-0912-7.
[13] A.K. Choudhary and S.K. Nagar: Order reduction techniques via routh approximation: a critical survey. IETE Journal of Research, 65(3), (2019), 365–379, DOI: 10.1080/03772063.2017.1419836.
[14] V.P. Singh and D. Chandra: Model reduction of discrete interval system using dominant poles retention and direct series expansion method. In 5th International Power Engineering and Optimization Conference, (2011), 27– 30, DOI: 10.1109/PEOCO.2011.5970421.
[15] V. Singh and D. Chandra: Reduction of discrete interval system using clustering of poles with Padé approximation: a computer-aided approach. International Journal of Engineering, Science and Technology, 4(1), (2012), 97–105, DOI: 10.4314/ijest.v4i1.11S.
[16] Y. Dolgin and E. Zeheb: On Routh-Pade model reduction of interval systems. IEEE Transactions on Automatic Control, 48(9), (2003), 1610–1612, DOI: 10.1109/TAC.2003.816999.
[17] S.F. Yang: Comments on “On Routh-Pade model reduction of interval systems”. IEEE Transactions on Automatic Control, 50(2), (2005), 273– 274, DOI: 10.1109/TAC.2004.841885.
[18] Y. Dolgin: Author’s reply [to comments on ‘On Routh-Pade model reduction of interval systems’ . IEEE Transactions on Automatic Control, 50(2), (2005), 274–275, DOI: 10.1109/TAC.2005.843849.
[19] B. Bandyopadhyay, O. Ismail, and R. Gorez: Routh-Pade approximation for interval systems. IEEE Transactions on Automatic Control, 39(12), (1994), 2454–2456, DOI: 10.1109/9.362850.
[20] Y.V. Hote, A.N. Jha, and J.R. Gupta: Reduced order modelling for some class of interval systems. International Journal of Modelling and Simulation, 34(2), (2014), 63–69, DOI: 10.2316/Journal.205.2014.2.205-5785.
[21] B. Bandyopadhyay, A. Upadhye, and O. Ismail: /spl gamma/-/spl delta/routh approximation for interval systems. IEEE Transactions on Automatic Control, 42(8), (1997), 1127–1130, DOI: 10.1109/9.618241.
[22] J. Bokam, V. Singh, and S. Raw: Comments on large scale interval system modelling using routh approximants. Journal of Advanced Research in Dynamical and Control Systems, 9(18), (2017), 1571–1575.
[23] G. Sastry, G.R. Rao, and P.M. Rao: Large scale interval system modelling using Routh approximants. Electronics Letters, 36(8), (2000), 768–769, DOI: 10.1049/el:20000571.
[24] M.S. Kumar and G. Begum: Model order reduction of linear time interval system using stability equation method and a soft computing technique. Advances in Electrical and Electronic Engineering, 14(2), (2016), 153– 161, DOI: 10.15598/aeee.v14i2.1432.
[25] S.R. Potturu and R. Prasad: Qualitative analysis of stable reduced order models for interval systems using mixed methods. IETE Journal of Research, (2018), 1–9, DOI: 10.1080/03772063.2018.1528185.
[26] N. Vijaya Anand, M. Siva Kumar, and R. Srinivasa Rao: A novel reduced order modeling of interval system using soft computing optimization approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(7), (2018), 879–894, DOI: 10.1177/0959651818766811.
[27] A. Abdelhak and M. Rachik: Model reduction problem of linear discrete systems: Admissibles initial states. Archives of Control Sciences, 29(1), (2019), 41–55, DOI: 10.24425/acs.2019.127522.
[28] M. Buslowicz: Robust stability of a class of uncertain fractional order linear systems with pure delay. Archives of Control Sciences, 25(2), (2015), 177–187.
[29] S.R. Potturu and R. Prasad: Model order reduction of LTI interval systems using differentiation method based on Kharitonov’s theorem. IETE Journal of Research, (2019), 1–17, DOI: 10.1080/03772063.2019.1686663.
[30] E.-H. Dulf: Simplified fractional order controller design algorithm. Mathematics, 7(12), (2019), DOI: 10.3390/math7121166.
[31] Y. Menasria, H. Bouras, and N. Debbache: An interval observer design for uncertain nonlinear systems based on the ts fuzzy model. Archives of Control Sciences, 27(3), (2017), 397–407, DOI: 10.1515/acsc-2017-0025.
[32] A. Khan, W. Xie, L. Zhang, and Ihsanullah: Interval state estimation for linear time-varying (LTV) discrete-time systems subject to component faults and uncertainties. Archives of Control Sciences, 29(2), (2019), 289- 305, DOI: 10.24425/acs.2019.129383.
[33] N. Akram, M. Alam, R. Hussain, A. Ali, S. Muhammad, R. Malik, and A.U. Haq: Passivity preserving model order reduction using the reduce norm method. Electronics, 9(6), (2020), DOI: 10.3390/electronics9060964.
[34] K. Kumar Deveerasetty and S. Nagar: Model order reduction of interval systems using an arithmetic operation. International Journal of Systems Science, (2020), 1–17, DOI: 10.1080/00207721.2020.1746433.
[35] K.K. Deveerasetty,Y. Zhou, S. Kamal, and S.K.Nagar: Computation of impulse-response gramian for interval systems. IETE Journal of Research, (2019), 1–15, DOI: 10.1080/03772063.2019.1690592.
[36] P. Dewangan, V. Singh, and S. Sinha: Improved approximation for SISO and MIMO continuous interval systems ensuring stability. Circuits, Systems, and Signal Processing, (2020), 1–12, DOI: 10.1007/s00034-020-01387-w.
[37] M.S. Kumar, N.V. Anand, and R.S. Rao: Impulse energy approximation of higher-order interval systems using Kharitonov’s polynomials. Transactions of the Institute of Measurement and Control, 38(10), (2016), 1225–1235, DOI: 10.1177/0142331215583326.
[38] S.K. Mangipudi and G. Begum: A new biased model order reduction for higher order interval systems. Advances in Electrical and Electronic Engineering, (2016), DOI: 10.15598/aeee.v14i2.1395.
[39] V.L. Kharitonov: The asymptotic stability of the equilibrium state of a family of systems of linear differential equations. Differentsial’nye Uravneniya, 14(11), (1978), 2086–2088.
[40] M. Sharma, A. Sachan and D. Kumar: Order reduction of higher order interval systems by stability preservation approach. In 2014 International Conference on Power, Control and Embedded Systems (ICPCES), (2014), 1–6.
[41] G. Sastry and P.M. Rao: A new method for modelling of large scale interval systems. IETE Journal of Research, 49(6), (2003), 423–430, DOI: 10.1080/03772063.2003.11416366.



Go to article

Authors and Affiliations

Jagadish Kumar Bokam
1
Vinay Pratap Singh
2
Ramesh Devarapalli
3
ORCID: ORCID
Fausto Pedro García Márquez
4
ORCID: ORCID

  1. Department of Electrical Electronics and Communication Engineering, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
  2. Department of Electrical Engineering, Malaviya National Institute of Technology Jaipur, India
  3. Department of Electrical Engineering, BITSindri, Dhanbad, Jharkhand
  4. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

This article validates the application of RT-Lab for the AGC studies of three-area systems. All the areas are employed with thermal-DSTS systems. A new controller named cascade FOPDN-FOPPIDN is employed. Its parameters are optimized using a CSA, subjecting to a new PI named HPA-ISE. The responses of the FOPDN-FOPIDN controller are related and are superior over PIDN and TIDN controllers. Moreover, the dominance of HPA-ISE is verified with ISE, and it performs better in terms of system dynamics. Further, the system performance reliability is analyzed with the AC-HVDC and is better than the AC system. Besides, sensitivity analysis recommends that the proposed FOPDN-FOPIDN at diverse conditions is robust and more reliability.
Go to article

Authors and Affiliations

Naladi Ram Babu
1
Tirumalasetty Chiranjeevi
2
Ramesh Devarapalli
3
ORCID: ORCID
Łukasz Knypiński
4
ORCID: ORCID
Fausto Pedro Garcìa Màrquez
5

  1. Department of Electrical and Electronics Engineering, Aditya Engineering College, Surampalem, Andhra Pradesh, India
  2. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U.P., India
  3. Department of Electrical/Electronics and Instrumentation Engineering, Institute of Chemical Technology, Indianoil Odisha Campus, Bhubaneswar751013, India
  4. Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland
  5. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

The Bearingless Switched Reluctance Motor (BSRM) is a new technology motor, which overcomes the problems of maintenances required associated with mechanical contacts and lubrication of rotor shaft effectively. In addition, it also improves the output power developed and rated speed. Hence, the BSRM can achieve high output power and super high speed with less size and cost. It has a considerable ripple in the net-torque due to its critical non-linearity and the salient pole structures of both stator and rotor poles. The resultant torque ripple, especially in these motors, causes the more vibrations and acoustic noises will affects the levitated rotor safety also. Practically at high-speed operations, the accurate measurement of the rotor position is complicated for conventional mechanical sensors. A new square currents control with global sliding mode control based sensorless torque observer is proposed to minimize the torque ripple and achieve a smooth, robust operation without using any mechanical sensors. The proposed controller is designed based on the error between the reference and measured torque values. The sliding mode torque observer measures the torque from the actual phase voltages, currents, and look-up tables. The simulation model has been modelled to validate the proposed methodology. From the simulation outputs, it is clear that the reduction of torque ripple by the proposed method shows improved than the conventional sliding mode controller. The overall system is more robust to the external disturbances, and it also gets efficient torque profile.
Go to article

Authors and Affiliations

Pulivarthi Nageswara Rao
1
Ramesh Devarapalli
2
ORCID: ORCID
Fausto Pedro García Márquez
3
ORCID: ORCID
G.V. Nagesh Kumar
4
Behnam Mohammadi-Ivatloo
5

  1. Department of Electrical Electronics and Communication Engineering, Gandhi Institute of Technology and Management (Deemed to be University),Visakhapatnam, 530045, Andhra Pradesh, India
  2. Department of Electrical Engineering, BITSindri, Dhanbad 828123, Jharkhand, India
  3. Ingenium Research Group, University of Castilla-La Mancha, Spain
  4. Department of EEE, JNTU Anantapur, College of Engineering, Pulivendula-516390, Andhra Pradesh, India
  5. University of Tabriz, Tabriz, Iran
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the formulation and numerical simulation for linear quadratic optimal control problem (LQOCP) of free terminal state and fixed terminal time fractional order discrete time singular system (FODSS). System dynamics is expressed in terms of Riemann-Liouville fractional derivative (RLFD), and performance index (PI) in terms of state and costate. Because of its complexity, finding analytical and numerical solutions to singular system (SS) is difficult. As a result, we use coordinate transformation to convert FODSS to its corresponding fractional order discrete time nonsingular system (FODNSS). After that, we obtain the necessary conditions by employing a Hamiltonian approach. The relevant conditions are solved using the general solution approach. For the analysis of formulation and solution algorithm, a numerical example is illustrated. Results are obtained for various �� values. According to state of the art, this is the first time that a formulation and numerical simulation of free terminal state and fixed terminal time optimal control problem (OCP) of FODSS is presented.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Ramesh Devarapalli
2
ORCID: ORCID
Naladi Ram Babu
3
Kiran Babu Vakkapatla
4
R. Gowri Sankara Rao
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U.P., India
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
  3. Department of EEE, Aditya Engineering College, Surampalem, Andhra Pradesh, India
  4. Lingayas Institute of Management and Technology Madalavarigudem, A.P., India
  5. Department of EEE, MVGR College of Engineering Vizianagaram, A.P., India
  6. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

Economic Load Dispatch (ELD) is utilized in finding the optimal combination of the real power generation that minimizes total generation cost, yet satisfying all equality and inequality constraints. It plays a significant role in planning and operating power systems with several generating stations. For simplicity, the cost function of each generating unit has been approximated by a single quadratic function. ELD is a subproblem of unit commitment and a nonlinear optimization problem. Many soft computing optimization methods have been developed in the recent past to solve ELD problems. In this paper, the most recently developed population-based optimization called the Salp Swarm Algorithm (SSA) has been utilized to solve the ELD problem. The results for the ELD problem have been verified by applying it to a standard 6-generator system with and without due consideration of transmission losses. The finally obtained results using the SSA are compared to that with the Particle Swarm Optimization (PSO) algorithm. It has been observed that the obtained results using the SSA are quite encouraging.
Go to article

Bibliography

[1] Rogers G., Power systems oscillations, Springer Science & Business Media (2012).
[2] Grainger J.J., StevensonW.D., Chang G.W., Power Systems Analysis, Mc Graw Hill Education (2003).
[3] Soft S., Power system economics: designing markets for electricity, Wiley-Interscience, Piscataway, NJ: New York (2002).
[4] Sheta A., Faris H., Braik M., Mirjalil S., Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparison Study, Applied Nature-Inspired Computing: Algorithms and Case Studies, Springer, pp. 199–230 (2020).
[5] Singht H.P., Singht Brar Y., Koyhari D.P., Reactive power based fair calculation approach for multiobjective load dispatch problem, Archives of Electrical Engineering, vol. 68, no. 4, pp. 719–735 (2019).
[6] Mistri A., Kumar Roy P., Mandal B., Chaotic biogeography-based optimization (CBBO) algorithm applied to economic load dispatch problem, Proceedings of National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), Durgapur, India, pp. 1–5 (2020).
[7] Zhang Q., Zou D., Duan N., Shen X., An adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problem, Applied Soft Computing, vol. 78, pp. 641–669 (2019).
[8] Singh D., Dhillon J.S., Ameliorated greywolf optimization for economic load dispatch problem, Energy, vol. 169, pp. 398–419 (2019).
[9] Raja M.A.Z., Ahmed U., Zameer A., Kiani A.K., Chaudhary N.I., Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem, Neutral Computing and Applications, vol. 31, no. S1, pp. 447–475 (2019).
[10] Hr S., Kaboli A., Alqallaf A.K., Solving non-convex economic load dispatch problem via artificial cooperative search algorithm, Expert Systems with Applications, vol. 128, pp. 14–27 (2019).
[11] Al-Betar M.A., Awadallah M.A., Krishan M.M., A non-convex economic load dispatch problem with valve loading effect using a hybrid grey wolf optimizer, Neutral Computing and Applications, vol. 32, pp. 12127–12154 (2020).
[12] Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M., Salp SwarmAlgorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software, vol. 114, pp. 163–191 (2017).
[13] Yang B., Zhonga L., Zhang X., Shua H., Yu T., Li H., Sun L., Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition, Journal of Cleaner Production, vol. 215, pp. 1203–1222 (2019).
[14] Ibrahim R.A., Ewees A.A., Oliva D., Abd Elaziz M., Lu S., Improved salp swarm algorithm based on particle swarm optimization for feature selection, Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 8, pp. 3155–3169 (2019).
[15] Abbassi R., Abbassi A., Heidari A.A., Mirjalili S., An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models, Energy Conversion and Management, vol. 179, pp. 362–372 (2019).
[16] Sayed G.I., Khoriba G., Haggag M.H., A novel chaotic salp swarm algorithm for global optimization and feature selection, Applied Intelligence, vol. 48, no. 10, pp. 3462–3481 (2018).
[17] Faris H., Mafarjab M.M., Heidaric A.A., Aljarah I., Mirjalilid S., Fujitae H., An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems, Knowledge-Based Systems, vol. 154, pp. 43–67 (2018).
[18] Hussien A.G., Hassanien A.E., Houssein E.H., Swarming behaviour of salps algorithm for predicting chemical compound activities, Proceedings of International Conference on Intelligent Computing and Information (2017), DOI: 10.1109/INTELCIS.2017.8260072.
[19] Zhang J.,Wang J.S., Improved Salp Swarm Algorithm Based on Levy Flight and Sine Cosine Operator, IEEE Access, vol. 8, pp. 99740–99771 (2020).
[20] Patnana N., Pattnaik S., Varshney T., Singh V., Self-Learning Salp Swarm Optimization Based PID Design of Doha RO Plant, Algorithms, vol. 13, no. 287, pp. 1–14 (2020).
[21] Hussien A.G., Hassanien A.E., Houssein E.H., Swarming behaviour of salps algorithm for predicting chemical compound activities, Proceedings of International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, pp. 315–320 (2017).
[22] Khan I.A., Alghamdi A., Touqeer Ahmed Jumani T.A., Alamgir A., Ahmed Bilal Awan A., Attaullah Khidrani A., Salp SwarmOptimization Algorithm-Based Fractional Order PID Controller for Dynamic Response and Stability Enhancement of an Automatic Voltage Regulator System, Electronics, vol. 8, no. 12, pp. 1–17 (2019).
[23] Mutluer M., Sahman A., Cunkas M., Heuristic optimization based on penalty approach for surface permanent magnet synchronous machines, Arabian Journal for Science and Engineering, vol. 45, pp. 6751–6767 (2020).
[24] Knypinski Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5 (2020).
[25] Knypinski Ł., J˛edryczka C., Demenko A., Influence of the shape of squirrel cage bars on the dimensions of permanent magnets in an optimized line-start permanent magnet synchronous motor, COMPEL, vol. 36, no. 1, pp. 298–308 (2017).
[26] Kennedy J., Eberhart R., Particle Swarm Optimization, Proceedings of the International Conference on Neutral Networks, Perth, Australia, pp. 1942–1948 (1995).
[27] Freitas D., Guerreiro Lopes L., Morgado-Dias F., Particle Swarm Optimization : A historical review up to the current developments, Entropy, vol. 22, no. 362, pp. 1–36 (2020).
Go to article

Authors and Affiliations

Ramesh Devarapalli
1
ORCID: ORCID
Nikhil Kumar Sinha
1
ORCID: ORCID
Bathina Venkateswara Rao
2
ORCID: ORCID
Łukasz Knypinski
3
ORCID: ORCID
Naraharisetti Jaya Naga Lakshmi
4
ORCID: ORCID
Fausto Pedro García Márquez
5
ORCID: ORCID

  1. Department of EE, B. I. T. Sindri, Dhanbad, Jharkhand – 828123, India
  2. Department of EEE, V R Siddhartha Engineering College (Autonomous), Vijayawada-520007, A.P., India
  3. Poznan University of Technology, Poland
  4. SR Engineering College: Warangal, Telangana, India
  5. Ingenium Research Group, University of Castilla-La Mancha, Spain

This page uses 'cookies'. Learn more