Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An automated procedure based on evolutionary computation and Finite Element Analysis (FEA) is proposed to synthesize the optimal distribution of nanoparticles (NPs) in multi-site injection for a Magnetic Fluid Hyperthermia (MFH) therapy. Evolution Strategy and Non dominated Sorting Genetic Algorithm (NSGA) are used as optimization procedures coupled with a Finite Element computation tool.

Go to article

Authors and Affiliations

Paolo Di Barba
Fabrizio Dughiero
Elisabetta Sieni
Download PDF Download RIS Download Bibtex

Abstract

Scanning electron microscopy (SEM) is a perfect technique for micro-/nano-object imaging [1] and movement measurement [2, 3] both in high and environmental vacuum conditions and at various temperatures ranging from elevated to low temperatures. In our view, the magnetic field expanding from the pole-piece makes it possible to characterize the behaviour of electromagnetic micro- and nano electromechanical systems (MEMS/NEMS) in which the deflection of the movable part is controlled by the electromagnetic force. What must be determined, however, is the magnetic field expanding from the e-beam column, which is a function of many factors, like working distance (WD), magnification and position of the device in relation to the e-beam column. There are only a few experimental methods for determination of the magnetic field in a scanning electron microscope. In this paper we present a method of the magnetic field determination under the scanning electron column by application of a silicon cantilever magnetometer. The micro-cantilever magnetometer is a silicon micro-fabricated MEMS electromagnetic device integrating a current loop of lithographically defined dimensions. Its stiffness can be calibrated with a precision of 5% by the method described by Majstrzyk et al. [4]. The deflection of the magnetometer cantilever is measured with a scanning electron microscope and thus, through knowing the bias current, it is possible to determine the magnetic field generated by the e-beam column in a defined position and at a defined magnification.

Go to article

Authors and Affiliations

Karolina Orłowska
Maria E. Mognaschi
Krzysztof Kwoka
Tomasz Piasecki
Piotr Kunicki
Andrzej Sierakowski
Wojciech Majstrzyk
Arkadiusz Podgórni
Bartosz Pruchnik
Paolo di Barba
Teodor Gotszalk

This page uses 'cookies'. Learn more