Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Od świtu ludzkości, czasów organizowania się i gromadzenia wspólnot osadniczych, poprzez czasy formowania się pierwszych miast, towarzyszyła człowiekowi wiara w różnorodne bóstwa1. Wraz z rozwojem kulturowym i społecznym także systemy wierzeń ulegały ujednolicaniu, kodyfikacji i przyciągały coraz większą liczbę wiernych, stając się czynnikiem społeczno-politycznym wpływającym istotnie na kształt i kierunki rozwoju młodych cywilizacji. Wraz ze wzrostem znaczenia nowych idei, organizacji przez nie przestrzeni sacrum i formalizacji zachowań, zaczęto kult "przekuwać w kamień"2. Analizując architekturę sakralną każdej epoki i studiując jej historię, można zaobserwować jak zmieniała się sinusoida stosunków społecznych pomiędzy tolerancją i religijnym współistnieniem z jednej strony, a nienawiścią i dążeniem do dominacji z drugiej. We współczesnym, bardzo zróżnicowanym, pełnym mnogości wyznań i różnic kulturowych świecie, architekci stają przed wyzwaniem w jaki sposób kształtować architekturę sakralną aby służyła pokojowej koegzystencji, akceptowaniu różnic, nie będąc jednocześnie zarzewiem konfliktów, wzajemnych roszczeń i pretensji.
Go to article

Authors and Affiliations

Michał Dmitruk
Download PDF Download RIS Download Bibtex

Abstract

Bliskość natury zawsze wywierała pozytywny wpływ na zdrowie człowieka i jego dobre samopoczucie. Od czasów rewolucji neolitycznej, zapoczątkowanej 10000 lat przed naszą erą i rozpoczęcia procesu przechodzenia z łowiectwa i zbieractwa do osiadłego trybu życia, świętym ogrodom, gajom czy formacjom skalnym zaczęto przypisywać mistyczną moc. W średniowieczu, stałymi elementami zespołów klasztornych były ogrody. Zarówno te ziołowe o funkcji czysto pragmatycznej - leczniczej, jak i ogrody rekreacyjne i wypoczynkowe - jako miejsce sprzyjające kontemplacji i zadumie. Wraz z rozwojem cywilizacyjnym, obecność ogrodów w przestrzeni osadniczej człowieka stała się trwałym elementem krajobrazu. Zauważono ich dobroczynny wpływ na psychikę i stan zdrowia człowieka, jak i doceniono walory czysto estetyczne. Wraz z rozwojem nowoczesnych technik medycznych, uzdrawiająca rola ogrodów została zmarginalizowana, bądź zupełnie pominięta. Skupiono się na czysto fizjologicznych efektach terapii a niezwykle istotny aspekt psychologii w przebiegu leczenia uznano za drugorzędny. Obecnie wiemy, że stan psychiczny pacjenta ma niejednokrotnie kluczowy wpływ proces zdrowienia. W Stanach Zjednoczonych Ameryki Północnej, w Kanadzie, jak i w niektórych krajach Europy Zachodniej ogród jest nieodłącznym elementem planu budynków służby zdrowia. Służy on nie pracownikom, ale przede wszystkim pacjentom, w celach wypoczynkowych i relaksacyjnych co ma wymierne przełożenie na proces rekonwalescencji. Zaplanowany jest w sposób pomagający wyzbyć się stresu i obciążeń psychicznych związanych z chorobą, dający poczucie spokoju i bezpieczeństwa. W Polsce ogrody lecznicze, towarzyszące budynkom szpitali czy przychodni nie są uważane za niezbędny element ich architektury, a zasady kompozycyjne takiej przestrzeni nie są dla wszystkich projektantów znane, bądź czytelne. Pojawia się więc konieczność edukacji społecznej, a wśród architektów pojawienia się trendu, skupionego na umiejscawianiu takich przestrzeni w towarzystwie budynków opieki medycznej i traktowaniu ich jako element nieodzowny. Korzyści zdrowotne dla pacjenta z takich udogodnień jakimi są ogrody lecznicze są niewspółmierne do kosztów ekonomicznych. A przecież to zdrowie jest najcenniejsze.
Go to article

Authors and Affiliations

Michał Dmitruk
Download PDF Download RIS Download Bibtex

Abstract

Problem budownictwa wielkopłytowego z lat 70-tych XX wieku zaczyna być zarówno w Polsce jak i w Europie problemem palącym. Kraje Europy Zachodniej, w obawie przed narastającą kryminalizacją i ubożeniem osiedli wielkopłytowych a także ich opuszczaniem przez mieszkańców, już w latach 90-tych XX wieku rozpoczęły kompleksowe zabiegi modernizacyjne, rewitalizacyjne i humanizujące stopniowo degradowaną tkankę miejską. Obecnie w blokach z wielkiej płyty żyje około 10 milionów Polaków, co stanowi ponad 1/4 mieszkańców kraju. Mimo podjętych przez wiele spółdzielni mieszkaniowych działań rewitalizacyjnych, jest to wciąż za mało, aby przywrócić tym budynkom wysoki standard i funkcjonalność, pożądaną przez rosnące wymagania i potrzeby powoli, lecz stopniowo bogacącego się polskiego społeczeństwa. Aby problem wielkiej płyty w Polsce rozwiązać w sposób właściwy, kompletny i trwały, niezbędne jest podjęcie kompleksowych działań skupiających się kolejno na: wczesnym uświadomieniu sobie i zrozumieniu skali problemu, dającym możliwość dokładnego zaplanowania i podjęcia działań naprawczych, aktywizacji i integracji społeczności osiedli wielkopłytowych - zaangażowania ich w procesy rewitalizacyjne a także przygotowania budżetu i uchwał prawnych, dających pole manewru do działań naprawczych oraz podjęcie czynności remontowych, wzorując się na doświadczeniach krajów zachodnich, umiejętnie przenosząc je na rodzimy grunt.
Go to article

Authors and Affiliations

Michał Dmitruk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents simulation and laboratory test results of an implementation of an infinite control set model predictive control into a three-phase AC/DC converter. The connection between the converter and electric grid is made through an LCL filter, which is characterized by a better reduction of grid current distortions and smaller (cheaper) components in comparison to an L-type filter. On the other hand, this type of filter can cause strong resonance at specific current harmonics, which is efficiently suppressed by the control strategy focusing on the strict control input filter capacitors voltage vector. The presented method links the benefits of using linear control methods based on a space vector modulator and the nonlinear ones, which result in excellent control performance in a steady state as well as in a transient state.

Go to article

Authors and Affiliations

K. Dmitruk
Download PDF Download RIS Download Bibtex

Abstract

A method for manufacturing of Al-Si alloy (EN AC-44200) matrix composite materials reinforced with MAX type phases in Ti-Al-C systems was developed. The MAX phases were synthesized using the Self-propagating High-Temperature Synthesis (SHS) method in its microwave assisted mode to allow Ti2AlC and Ti3AlC2 to be created in the form of spatial structures with open porosity. Obtained structures were subjected to the squeeze casting infiltration in order to create a composite material. Microstructures of the produced materials were observed by the means of optical and SEM microscopies. The applied infiltration process allows forming of homogeneous materials with a negligible residual porosity. The obtained composite materials possess no visible defects or discontinuities in the structure, which could fundamentally deteriorate their performance and mechanical properties. The produced composites, together with the reference sample of a sole matrix material, were subjected to mechanical properties tests: nanohardness or hardness (HV) and instrumental modulus of longitudinal elasticity (EIT).
Go to article

Authors and Affiliations

A. Dmitruk
K. Naplocha
Download PDF Download RIS Download Bibtex

Abstract


One of the ways to reduce greenhouse gas emissions to the atmosphere is to minimise the production of fossil fuels energy, which, among others, can be achieved through gradual closure of hard and brown coal mines. However, such transformation comes with economic and social problems as well as structural changes. This article is a case study based on the objectives of the Spatial Development Plan for the Central Coal Region (CRW) – Lublin Coal Basin (LZW), developed as a consequence of the discovery of significant hard coal deposits in the north-eastern part of the Lublin voivodeship in the 1960’s. In retrospect, it can be observed that the overly ambitious objectives of the CRW-LZW urban plan were implemented only to a limited extent.
This article aims to compare the original urban planning objectives with the current development of the industrial district and to indicate the cause for such a significant limitation of the realisation of the originally planned investment. Also, the article endeavours to simultaneously emphasize which factors should be specially considered, when planning such large-scope investments, that also broadly influence demographic and urban structure of the region and the way it is functioning.
The analysis was carried out in the context of economic difficulties and the political crisis at the turn of the 1970s and 1980s, the changes in the country’s political and economic system, as well as the principles of the socio-economic concept of sustainable development implemented at the end of the 20th century, and the currently prevailing circular economy. The characteristics and analysis of the adopted design solutions were carried out, the assessment of the extent to which the planned investment was completed and what factors influenced its current condition. The collected data is summarized and compared in a table. The conclusions may prove helpful in establishing the direction of Lublin Coal Basin the development in the coming years. The described solutions and experiences may constitute the theoretical basis for accurate forecasting of the scope of similar investments in the future.
Go to article

Bibliography

[1] A . Frejowski, J. Bondaruk, A. Duda, Wyzwania i szanse dla terenów po wyeksploatowanych kopalniach węgla: od czarnej do zielonej energii. Energies 14, 1385 (2021). DOI : https://doi.org/10.3390/en14051385
[2] H . Gerbelová, A. Spisto, S. Giaccaria, Regional Energy Transition: An Analytical Approach to the Slovakian Coal Regio. Energies 14, 110 (2021). DOI : https://doi.org/10.3390/en14010110
[3] L. Kolanowski, Rozwój przestrzenny Łęcznej, jako ośrodka Lubelskiego Zagłębia Węglowego. Annales Universitatis Mariae Curie-Skłodowska, Lublin 73, Sectio B (2018). DOI : https://doi.org/10.17951/b.2018.73.0.29-47
[4] L. Lehotský, M. Černík, Brown coal mining in the Czech Republic – lessons on the coal phase-out. International Issues & Slovak Foreign Policy Affairs 28, (3/4) (2019). https://www.jstor.org/stable/26905905, accessed 25.02.2021
[5] P. Oei, H. Brauers, P. Herpich, Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018. Climate Policy 20 (8), 963-979 (2020). DOI : https://doi.org/10.1080/14693062.2019.1688636
[6] E . Pietrzyk-Sokulska, R. Uberman, J. Kulczycka, The impact of mining on the environment in Poland – myths and reality. Mineral Resources Management 31 (1) (2015). DOI : https://doi.org/10.1515/gospo-2015-0009
[7] E . Sermet, J. Górecki, Podstawowe kryteria możliwości podziemnego zgazowania węgla w Lubelskim Zagłębiu Węglowym. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii Polskiej Akademii Nauk nr 83/2012, (2012). ISSN 2080-0819.
[8] A . Tajduś, A. Tokarski, Risks related to energy policy of Poland until 2040 (EPP 2040). Archives of Mining Sciences 65 (4), 877-899 (2020). DOI : https://doi.org/10.24425/ams.2020.135183
[9] K . Van de Loo, Social engineering for coal mine closures – a world bank report, the international research deficit and reflections from a German perspective. Mining Report 155 (4) (2019).
[10] B. Brylak-Szymczak, A. Link, M. Żurkowska, M. Osmulska, E. Mazurek, R. Dylewski, Łęczna. Nowe polskie miasto. Przyszłość, perspektywy. Rada Miejska w Łęcznej, Łęczna (1994).
[11] A . Frużyński, Zarys dziejów górnictwa węgla kamiennego w Polsce. Muzeum Górnictwa Węglowego, Zabrze (2012). ISBN 978-83-935614-4-5
[12] J. Kicki, B. Kozek, J. Jarosz, A. Dyczko (Ed.), 30 lat górnictwa węglowego na Lubelszczyźnie 1975-2005, Lubelski Węgiel „Bogdanka” Spółka Akcyjna, (2006). ISBN: 978-83-917727-3-X
[13] A . Zdanowski, Atlas Geologiczny Lubelskiego Zagłębia Węglowego, Państwowy Instytut Geologiczny, Warszawa, (1999). OCLC: 45743965
[14] A . Harat, Z. Adamczyk, A. Klupa, Economic and environmental aspects of the liquidation of coal mines, Proceeding of Conference: 17th International Multidisciplinary Scientific Geo Conference SGE M 2017, 29 June – 5 July, (2017). DOI : https://doi.org/10.5593/sgem2017/54/S23.035, ISSN 1314-2704
[15] J. Kaliński, Z. Landau, Gospodarka Polski w XX wieku. Wyd. 2 zmienione. Polskie Wydawnictwo Ekonomiczne, Warszawa, (2003). ISBN: 978-83-208-1428-6
[16] A Green New Deal. Joined-up policies to solve the triple crunch of the credit crisis, climate change and high oil prices, New Economics Foundation, Londyn, (2008). https://neweconomics.org/2008/07/green-new-deal, accessed: 23.11.2021
[17] EU coal regions: opportunities and challenges ahead. https://ec.europa.eu/jrc/en/news/eu-coal-regions-opportunitiesand-challenges-ahead, accessed 25.07.2021
[18] Kluczowe elementy Strategii rozwoju LW Bogdanka S.A. Obszar Wydobycie Grupy ENEA do 2030 roku (perspektywa do 2040 roku). https://ri.lw.com.pl/o-firmie-strategia, accessed 25.07.2021
[19] https://www.lw.com.pl/pl,2,aktualnosci,d264,kontynuacja_i_transformacja__nowa_strategia_lw_bogdanka_ do_2030_r.html, accessed 25.07.2021
[20] https://leczna.pl/leczna/leczna-w-liczbach, accessed 25.07.2021
[21] Letter from the President of the Management Board of Lubelski Węgiel Bogdanka, No. 227.PR.076.28.14.2021.1388.
[22] Letter of the Undersecretary of State No. UAN .1-LZW-20/79 of March 16, 1979.
[23] Directive (EU ) 2018/2001 of the European Parliament and of the Council of December 11, 2018, on the promotion of the use of energy from renewable sources, (2018).
[24] P. Czyżak, M. Hetmański, 2030 – Analiza dot. Granicznego roku odejścia od węgla w energetyce w Europie i Polsce. Instrat Policy Paper 01/2020, (2020). ISBN: 978-83-946738-3-3
[25] C . Kemfert, M. Fischedick, K. Bausch, Phasing out coal in the German energy sector interdependencies, challenges and potential solutions. German Institute for Economic Research (DIW Berlin), (2019). https://www.ecologic.eu/sites/default/files/publication/2019/3537-kohlereader_englisch-final.pdf, accessed 23.11.2021
[26] J. Porzycki, Lubelskie Zagłębie Węglowe. [In:] Przewodnik 42 Zjazdu Polskiego Towarzystwa Geologicznego Lublin, Wydawnictwo Geologiczne, (1970).
[27] J. Stochlak, K. Zarębski, Rozwój badań hydrogeologicznych w Centralnym Rejonie Węglowym LZW w okresie 1964-1981. Instytut Kształtowania Środowiska Lublin, GIG Oddz. Terenowy Lublin
[28] Spatial Development Plan of the Central Coal Region of the Lublin Coal Basin.
[29] Resolution of the Council of Ministers no. 58/77 on the construction of a pilot-mining mine in the LZW, (1977).
[30] Resolution of the Council of Ministers no. 34/88 on the suspension of the construction of the k-2 mine in Stefanów, (1988).
[31] Resolution of the Sejm of the Polish People’s Republic of December 18, 1976 on the five-year national socioeconomic plan for the years 1976-1980. Journal of Laws of 1976 no. 39, item 226.
[32] Resolution of the Council of Ministers no. 7/89 on suspension of financing the construction of the Bogdanka mine from central funds, (1989).
[33] Regulation No. 10 of the Minister of Local Economy and Environmental Protection of January 20, 1974, on the establishment of a technical standard for the design of multi-family dwellings and residential buildings for nonagricultural people, „Dziennik Budownictwa“ (1974).
Go to article

Authors and Affiliations

Michał Tomasz Dmitruk
1
ORCID: ORCID

  1. Lublin University of Technology, 38D Nadbystrzycka Str., 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Investment casting combined with the additive manufacturing technology enables production of the thin-walled elements, that are geometrically complex, precise and can be easy commercialized. This paper presents design of aluminium alloy honeycombs, which are characterized with light structure, internal parallel oriented channels and suitable stiffness. Based on 3D printed pattern the mould was prepared from standard ceramic material subjected subsequently to appropriate heat treatment. Into created mould cavity with intricate and susceptible structure molten AC 44200 aluminium alloy was poured under low pressure. Properly designed gating system and selected process parameters enabled to limit the shrinkage voids, porosities and misruns. Compression examination performed in two directions showed different mechanisms of cell deformation. Characteristic plateau region of stress-strain curves allowed to determine absorbed energy per unit volume, which was 485 or 402 J/mm3 depending on load direction. Elaborated technology will be applied for the production of honeycomb based elements designated for energy absorption capability.

Go to article

Authors and Affiliations

K. Naplocha
ORCID: ORCID
A. Dmitruk
ORCID: ORCID
P. Mayer
J.W. Kaczmar
Download PDF Download RIS Download Bibtex

Abstract

Two methods were evaluated in terms of manufacturing of MAX phase preforms characterized with open porosity: microwave-assisted self-propagating high-temperature synthesis (SHS) and spark plasma sintering (SPS). The main purpose of fabrication of such open-porous preforms is that they can be successfully applied as a reinforcement in metal matrix composite (MMC) materials. In order to simulate the most similar conditions to microwave-assisted SHS, the sintering time of SPS was significantly reduced and the pressure was maintained at a minimum value. The chosen approach allows these two methods to be compared in terms of structure homogeneity, complete reactive charge conversion and energy effectivity. Study was performed in Ti-Al-C system, in which the samples were compacted from elemental powders of Ti, Al, C in molar ratio of 2:1:1. Manufactured materials after syntheses were subjected to SEM, XRD and STEM analyses in order to investigate their microstructures and chemical compositions. As was concluded, only microwave-assisted SHS synthesis allows the creation of MAX phases in the studied system. SPS technique led only to the formation of intermetallic secondary phases. The fabrication of MAX phases’ foams by microwave-assisted SHS presents some interesting advantages compared to conventional manufacturing methods. This work presents the characterization of foams obtained by microwave-assisted SHS comparing the results with materials produced by SPS. The analysis of SPS products for different sintering temperatures provided the better insight into the synthesis of MAX phases, supporting the established mechanism. Dissimilarities in the heating mechanisms that lead to the differing synthesis products were also discussed.

Go to article

Authors and Affiliations

A. Dmitruk
ORCID: ORCID
M. Lagos
K. Naplocha
ORCID: ORCID
P. Egizabal
Download PDF Download RIS Download Bibtex

Abstract

Microwave Assisted Self-propagating High-temperature Synthesis (MASHS) was used to prepare open-porous MAX phase preforms in Ti-Al-C and Ti-Si-C systems, which were further used as reinforcements for Al-Si matrix composite materials. The pretreatment of substrates was investigated to obtain open-porous cellular structures. Squeeze casting infiltration was chosen to be implemented as a method of composites manufacturing. Process parameters were adjusted in order to avoid oxidation during infiltration and to ensure the proper filling. Obtained materials were reproducible, well saturated and dense, without significant residual porosity or undesired interactions between the constituents. Based on this and the previous work of the authors, the reinforcement effect was characterized and compared for both systems. For the Al-Si+Ti-Al-C composite, an approx. 4-fold increase in hardness and instrumental Young's modulus was observed in relation to the matrix material. Compared to the matrix, Al-Si+Ti-Si-C composite improved more than 5-fold in hardness and almost 6-fold in Young's modulus. Wear resistance (established for different loads: 0.1, 0.2 and 0.5 MPa) for Al-Si+Ti-Al-C was two times higher than for the sole matrix, while for Al-Si+Ti-Si-C the improvement was up to 32%. Both composite materials exhibited approximately two times lower thermal expansion coefficients than the matrix, resulting in enhanced dimensional stability.
Go to article

Bibliography

[1] Gonzalez-Julian, J. (2021). Processing of MAX phases: From synthesis to applications. Journal of the American Ceramic Society. 104, 659-690. https://doi.org/10.1111/jace.17544.
[2] Barsoum, M.W. (2013). MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley-VCH.
[3] Arróyave, R., Talapatra, A., Duong, T., Son, W., Gao, H. & Radovic M. (2017). Does aluminum play well with others? Intrinsic Al-A alloying behavior in 211/312 MAX phases. Materials Research Letters. 5(3), 170-178. https://doi.org/10.1080/21663831.2016.1241319.
[4] Khoptiar, Y. & Gotman, I. (2002). Ti2AlC ternary carbide synthesized by thermal explosion, Materials Letters. 57(1), 72-76. https://doi.org/10.1016/S0167-577X(02)00701-2.
[5] Jeitschko, W. & Nowotny, H. (1967). Die kristallstruktur von Ti3SiC2-ein neuer komplexcarbid-typ. Monatshefte Für Chemie. 98, 329-337. https://doi.org/10.1007/BF00899949.
[6] El Saeed, M.A., Deorsola, F.A. & Rashad, R.M. (2013). Influence of SPS parameters on the density and mechanical properties of sintered Ti3SiC2 powders. International Journal of Refractory Metals and Hard Materials. 41, 48-53. https://doi.org/10.1016/j.ijrmhm.2013.01.016.
[7] Radhakrishnan, R., Williams, J.J. & Akinc M. (1999). Synthesis and high-temperature stability of Ti3SiC2. Journal of Alloys and Compounds. 285(1-2), 85-88. https://doi.org/10.1016/S0925-8388(99)00003-1.
[8] Wang, Y., Huang, Z., Hu, W., Cai, L., Lei, C., Yu, Q. & Jiao Y. (2021). Preparation and characteristics of Ti3AlC2-Al3Ti/Al composite materials synthesized from pure Al and Ti3AlC2 powders. Materials Characterization. 178, 111298. https://doi.org/10.1016/j.matchar.2021.111298.
[9] Wang, Z., Ma, Y., Sun, K., Zhang, Q., Zhou, C., Shao, P., Xiu, Z. & Wu, G. (2022). Enhanced ductility of Ti3AlC2 particles reinforced pure aluminum composites by interface control. Materials Science and Engineering: A. 832, 142393. https://doi.org/10.1016/j.msea.2021.142393.
[10] Zhai, W., Pu, B., Sun, L., Xu, L., Wang, Y., He, L., Dong, H., Gao, Y., Han, M. & Xue, Y. (2022). Influence of Ti3AlC2 content and load on the tribological behaviors of Ti3AlC2p/Al composites. Ceramics International. 48(2), 1745-1756. https://doi.org/10.1016/j.ceramint.2021.09.254.
[11] Anasori, B., Caspi, E.N. & Barsoum, M.W. (2014). Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. Materials Science and Engineering: A. 618, 511-522. https://doi.org/10.1016/j.msea.2014.09.039.
[12] Anasori, B. & Barsoum, M.W. (2016). Energy damping in magnesium alloy composites reinforced with TiC or Ti2AlC particles. Materials Science and Engineering: A. 653, 53-62. https://doi.org/10.1016/j.msea.2015.11.070.
[13] Hu, L., Kothalkar, A., O’Neil, M., Karaman, I. & Radovic, M. (2014). Current-activated, pressure-assisted infiltration: A novel, versatile route for producing interpenetrating ceramic-metal composites. Materials Research Letters. 2, 124-130. https://doi.org/10.1080/21663831.2013.873498.
[14] Song, I.H., Kim, D.K., Hahn, Y.D. & Kim, H.D. (2004). Investigation of Ti3AlC2 in the in situ TiC-Al composite prepared by the exothermic reaction process in liquid aluminum. Materials Letters. 58(5), 593-597. https://doi.org/10.1016/S0167-577X(03)00576-7.
[15] Wang, W.J., Gauthier-Brunet, V., Bei, G.P., Laplanche, G., Bonneville, J., Joulain, A. & Dubois, S. (2011). Powder metallurgy processing and compressive properties of Ti3AlC2/Al composites. Materials Science and Engineering: A. 530, 168-173. https://doi.org/10.1016/j.msea.2011.09.068.
[16] Chen, Y.L., Yan, M., Sun, Y.M., Mei, B.C. & Zhu, J.Q. (2009). The phase transformation and microstructure of TiAl/Ti2AlC composites caused by hot pressing. Ceramics International. 35(5), 1807-1812. https://doi.org/10.1016/j.ceramint.2008.10.009.
[17] Fedotov. A.F., Amosov. A.P., Latukhin. E.I. & Novikov. V.A. (2016). Fabrication of aluminum–ceramic skeleton composites based on the Ti2AlC MAX phase by SHS compaction. Russian Journal of Non-Ferrous Metals. 57(5), 33-40. https://doi.org/10.3103/S1067821216010053.
[18] Dang, W., Ren, S., Zhou, J., Yu, Y., Li, Z. & Wang, L. (2016). Influence of Cu on the mechanical and tribological properties of Ti3SiC2. Ceramics International. 42(8), 9972-9980. https://doi.org/10.1016/j.ceramint.2016.03.099.
[19] Shi, X., Wang, M., Xu, Z., Zhai, W. & Zhang, Q. (2013). Tribological behavior of Ti3SiC2/(WC-10Co) composites prepared by spark plasma sintering. Materials & Design. 45, 365-376. https://doi.org/10.1016/j.matdes.2012.08.069.
[20] Dang, W., Ren, S., Zhou, J., Yu, Y. & Wang, L. (2016). The tribological properties of Ti3SiC2/Cu/Al/SiC composite at elevated temperatures. Tribology International. 104, 294-302. https://doi.org/10.1016/j.triboint.2016.09.008.
[21] Krinitcyn, M., Fu, Z., Harris, J., Kostikov, K., Pribytkov, G.A., Greil, P. & Travitzky, N. (2017). Laminated object manufacturing of in-situ synthesized MAX-phase composites. Ceramics International. 43(12), 9241-9245. https://doi.org/10.1016/j.ceramint.2017.04.079.
[22] Li, H., Peng, L.M., Gong, M., He, L.H., Zhao, J.H. & Zhang, Y.F. (2005). Processing and microstructure of Ti3SiC2 / M (M = Ni or Co) composites. Materials Letters. 59(21), 2647-2649. https://doi.org/10.1016/j.matlet.2005.04.010.
[23] Sun, Z., Zhou, M.C. & Li, S. (2002). Tribological behavior of Ti3SiC2 based materials. Journal of Materials Science & Technology. 18(2), 142-145.
[24] Hu, C., Zhou, Y., Bao, Y. & Wan, D. (2006). Tribological properties of polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites. Journal of the American Ceramic Society. 89(11), 3456-3461. https://doi.org/10.1111/j.1551-2916.2006.01253.x.
[25] Yang, J., Gu, W., Pan, L.M., Song, K., Chen, X. & Qiu, T. (2011). Friction and wear properties of in situ (TiB2+TiC)/Ti3SiC2 composites. Wear. 271(11-12), 2940-2946. https://doi.org/10.1016/j.wear.2011.06.017.
[26] Lis, J., Chlubny, L., Łopaciński, M., Stobierski, L. & Bućko, M.M. (2008). Ceramic nanolaminates-Processing and application. Journal of the European Ceramic Society. 28(5), 1009-1014. https://doi.org/10.1016/j.jeurceramsoc.2007.09.033.
[27] Naplocha, K. (2013). Composite materials strengthened with preforms produced in the process of high-temperature synthesis in a microwave field (in Polish: Materiały kompozytowe umacniane preformami wytworzonymi w procesie wysokotemperaturowej syntezy w polu mikrofalowym). Wroclaw: Oficyna Wydawnicza PWr.
[28] Merzhanov, G. (2011). Thermally coupled SHS reactions. International Journal of Self-Propagating High-Temperature Synthesis. 20, 61-63. https://doi.org/10.3103/ S1061386211010109.
[29] Dmitruk, A., Żak, A., Naplocha, K., Dudziński, W. & Morgiel, J. (2018). Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration. Materials Characterization. 146, 182-188. https://doi.org/10.1016/j.matchar.2018.10.005.
[30] Dmitruk, A., Naplocha, K., Żak, A., Strojny-Nędza, A., Dieringa, H. & Kainer K.U. (2019). Development of pore-free Ti-Si-C MAX/Al-Si composite materials manufactured by squeeze casting infiltration. Journal of Materials Engineering and Performance. 28, 6248-6257. https://doi.org/10.1007/s11665-019-04390-8.
[31] Dmitruk, A., Naplocha, K. & Strojny-Nędza, A. (2018). Thermal properties of Al alloy matrix composites reinforced with MAX type phases. Composites Theory and Practice. 18(1), 32-36. [32] Dmitruk, A. & Naplocha, K. (2018). Manufacturing of Al alloy matrix composite materials reinforced with MAX phases. Archives of Foundry Engineering. 18(2), 198-202. DOI: 10.24425/122528.
[33] Chen X. & Bei G. (2017). Toughening mechanisms in nanolayered MAX phase ceramics-a review. Materials (Basel). 10(4), 1-12. https://doi.org/10.3390/ma10040366.
[34] Yang, J., Liao, C., Wang, J., Jiang, Y. & He, Y. (2014). Effects of the Al content on pore structures of porous Ti3 AlC2 ceramics by reactive synthesis. Ceramics International. 40(3), 4643-4648. https://doi.org/10.1016/ j.ceramint.2013.09.004.
[35] Hashimoto, S., Nishina, N., Hirao, K., Zhou, Y., Hyuga, H., Honda, S. & Iwamoto, Y. (2012). Formation mechanism of Ti2AlC under the self-progating high-temperature synthesis (SHS) mode. Materials Research Bulletin. 47(5), 1162-1168. https://doi.org/10.1016/j.materresbull.2012.02.003.
[36] Yang. J., Liao. C., Wang. J., Jiang. Y. & He. Y. (2014). Reactive synthesis for porous Ti3AlC2 ceramics through TiH2, Al and graphite powders. Ceramics International. 40(5), 6739-6745. https://doi.org/10.1016/ j.ceramint.2013.11.136.
[37] Hendaoui, A., Vrel, D., Amara, A., Langlois, P., Andasmas, M. & Guerioune, M. (2010). Synthesis of high-purity polycrystalline MAX phases in Ti-Al-C system through mechanically activated self-propagating high-temperature synthesis. Journal of the European Ceramic Society. 30(4), 1049-1057. https://doi.org/10.1016/j.jeurceramsoc.2009.10.001.
[38] Yeh, C.L. & Shen, Y.G. (2008). Effects of SiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis. Journal of Alloys and Compounds. 461(1-2), 654-660. https://doi.org/10.1016/j.jallcom.2007.07.088.
[39] Zhang, Y., Ding, G.P., Zhou, Y.C. & Cai, B.C. (2002). Ti3SiC2 - a selflubricating ceramic, Materials Letters. 55(5), 285-289. https://doi.org/10.1016/S0167-577X(02)00379-8.
[40] Radovic, M. & Barsoum, M.W. (2013). MAX phases: Bridging the gap between metals and ceramics. American Ceramic Society Bulletin. 92(3), 20-27.
[41] Barsoum, M.W., El-raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, E.A. & Hubbard, C.R. (1999). Thermal properties of Ti3SiC2. Journal of Physics and Chemistry of Solids. 60(4), 429-439. https://doi.org/10.1016/S0022-3697(98)00313-8.
[42] Son, W., Duong, T., Talapatra, A., Gao, H., Arróyave, R. & Radovic, M. (2016). Ab-initio investigation of the finite-temperatures structural, elastic, and thermodynamic properties of Ti3AlC2 and Ti3SiC2. Computational Materials Science. 124, 420-427. https://doi.org/10.1016/j.commatsci.2016.08.015.
[43] Shih, C., Meisner, R., Porter, W., Katoh, Y. & Zinkle, S.J. (2013). Physical and thermal mechanical characterization of non-irradiated MAX phase materials (Ti-Si-C and Ti-Al-C systems). Fusion Reactor Materials Program. 55, 78-93.
[44] Wang, X.H. & Zhou, Y.C. (2010). Layered Machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. Journal of Materials Science & Technology. 26(5), 385-416. https://doi.org/10.1016/S1005-0302(10)60064-3.

Go to article

Authors and Affiliations

A. Dmitruk
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID
A. Żak
2
A. Strojny-Nędza
3

  1. Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Department of Lightweight Elements Engineering, Foundry and Automation, Poland
  2. Wrocław University of Science and Technology, Faculty of Chemistry, Institute of Advanced Materials, Poland
  3. Łukasiewicz Institute of Microelectronics and Photonics, Poland
Download PDF Download RIS Download Bibtex

Abstract

The process of investment casting of AZ91 magnesium alloy open-cell porosity foams was analysed. A basic investment casting technique was modified to enable the manufacturing of magnesium foams of chosen porosities in a safe and effective way. Various casting parameters (mould temperature, metal pouring temperature, pressure during metal pouring and solidifying) were calculated and analysed to assure complete mould filling and to minimize surface reactions with mould material. The foams manufactured with this method have been tested for their mechanical strength and collapsing behaviour. The AZ91 foams acquired in this research turned out to have very high open porosity level (>80%) and performed with Young’s modulus of ~30 MPa on average. Their collapsing mechanism has turned out to be mostly brittle. Magnesium alloy foams of such morphology may find their application in fields requiring lightweight materials of high strength to density ratio or of high energy absorption properties, as well as in biomedical implants due to magnesium’s high biocompatibility and its mechanical properties similar to bone tissue.
Go to article

Bibliography

[1] Gawdzińska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal- ceramic composite foams. Archives of Foundry Engineering. 17(4), 47-50. DOI: 10.1515/afe-2017-0129.
[2] Bisht, A., Patel, V. K. & Gangil, B. (2019). Future of metal foam materials in automotive industry. In: Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V. (eds), Automotive Tribology. Energy, Environment, and Sustainability (pp. 51-63). Singapore: Springer. DOI: 10.1007/978-981-15-0434-1_4.
[3] Popielarski, P., Sika, R., Czarnecka-Komorowska, D., Szymański, P., Rogalewicz, M. & Gawdzińska, K. (2021). Evaluation of the cause and consequences of defects in cast metal-ceramic composite foams. Archives of Foundry Engineering. 21(1), 81-88. DOI: 10.24425/afe.2021.136082.
[4] Vilniškis, T., Januševičius, T. & Baltrėnas, P. (2020). Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation. Noise Control Engineering Journal. 68(3), 199-208. DOI: 10.3397/1/376817.
[5] Sivasankaran, S. & Mallawi, F.O.M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering. 26, 101095, 1-14. DOI: 10.1016/J.CSITE.2021.101095.
[6] Naplocha, K., Koniuszewska, A., Lichota, J. & Kaczmar, J. W. (2016). Enhancement of heat transfer in PCM by cellular Zn-Al structure. Archives of Foundry Engineering. 16(4), 91-94. DOI: 10.1515/afe-2016-0090.
[7] Lehmann, H., Werzner, E., Malik, A., Abendroth, M., Ray, S. & Jung, B. (2022). Computer-aided design of metal melt filters: geometric modifications of open-cell foams, effective hydraulic properties and filtration performance. Advanced Engineering Materials. 24(2), 1-11. DOI: 10.1002/adem.202100878.
[8] Kryca, J., Iwaniszyn, M., Piątek, M., Jodłowski, P.J., Jędrzejczyk, R., Pędrys, R., Wróbel, A., Łojewska, J. & Kołodziej, A. (2016). Structured foam reactor with CuSSZ-13 catalyst for SCR of NOx with ammonia. Topics in Catalysis. 59(10), 887-894. DOI: 10.1007/S11244-016-0564-4.
[9] Alamdari, A. (2015). Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 27(2), 934-944. DOI: 10.1016/J.JNGSE.2015.09.037.
[10] Anglani, A. & Pacella, M. (2021). Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. Procedia CIRP. 99, 307-312. DOI: 10.1016/j.procir.2021.03.046.
[11] Anglani, A. & Pacella, M. (2018). Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production. Procedia CIRP. 67, 504-509. DOI: 10.1016/J.PROCIR.2017.12.252.
[12] Wang, Y., Jiang, S., Wu, Z., Shao, H., Wang, K., & Wang, L. (2018). Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. Journal of Loss Prevention in the Process Industries. 56, 451-457. DOI: 10.1016/J.JLP.2018.09.009.
[13] Hua, L., Sun, H. & Gu Jiangsu, J. (2016). Foam metal metamaterial panel for mechanical waves isolation. Proceedings of the SPIE, 9802 (id.98021R), 8. DOI: 10.1117/12.2219470.
[14] Marx, J., & Rabiei, A. (2017). Overview of composite metal foams and their properties and performance. Advanced Engineering Materials, 19(11), 1600776. DOI: 10.1002/ADEM.201600776.
[15] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.
[16] Kang, L., Shi, Y. & Luo, X. (2021). Effects of sodium chloride on structure and compressive properties of foamed AZ91 Effects of sodium chloride on structure and compressive properties of foamed AZ91. AIP Advances.11, 015118, 1-4. DOI: 10.1063/5.0033314.
[17] Pelczar, D., Długosz, P., Darłak, P., Nykiel, M., & Hebda, M. (2022). The effect of BN or SiC addition on PEO properties of coatings formed on AZ91 magnesium alloy. Archives of Metallurgy and Materials. 67(1), 147-154. DOI: https://doi.org/10.24425/amm.2022.137483.
[18] Gupta, M., Mui Ling Sharon, N. (2010). Magnesium, Magnesium Alloys, and Magnesium Composites. Hoboken: John Wiley & Sons, Ltd. DOI: 10.1002/9780470905098.
[19] Dong-hui, Y., Shang-run, Y., Hui, W., Ai-bin, M., Jing-hua, J., Jian-qing, C. & Ding-lie, W. (2010). Compressive properties of cellular Mg foams fabricated by melt-foaming method. Materials Science & Engineering A. 527(21-22), 5405-5409. DOI: 10.1016/j.msea.2010.05.017.
[20] Kroupová, I., Radkovský, F., Lichý, P. & Bednářová, V. (2015). Manufacturing of cast metal foams with irregular cell structure. Archives of Foundry Engineering. 15(2), 55-58. DOI: 10.1515/afe-2015-0038.
[21] Shih, T., Wang, J. & Chong, K. (2004). Combustion of magnesium alloys in air. Materials Chemistry and Physics. 85(2-3), 302-309. DOI: 10.1016/j.matchemphys.2004.01.036.
[22] Fujisawa, S., Yonezu, A. (2014). Mechanical property of microstructure in die-cast magnesium alloy evaluated by indentation testing at elevated temperature. Recent Advances in Structural Integrity Analysis: Proceedings of the International Congress (APCF/SIF-2014). Woodhead Publishing Limited. 422-426. DOI: 10.1533/9780081002254.422.
[23] Vyas, A.V. & Sutaria, M.P. (2020). Investigation on influence of the cast part thickness on interfacial mold–metal reactions during the investment casting of AZ91 magnesium alloy. International Journal of Metalcasting. 20(4), 139-144. DOI: 10.1007/s40962-020-00530-2.
[24] Ravi, K.R., Pillai, R.M., Amaranathan, K.R., Pai, B.C. & Chakraborty, M. (2008). Fluidity of aluminum alloys and composites: A review. Journal of Alloys and Compounds. 456(1-2), 201-210. DOI: 10.1016/j.jallcom.2007.02.038.
[25] Voigt, R.C., Bertoletti, J., Kaley, A., Ricotta, S., Sunday, T. (2002). Fillability of thin-wall steel castings. Technical Report. https://doi.org/10.2172/801749.
[26] Dewhirst, B.A. (2008). Castability control in metal casting via fluidity measures: Application of error analysis to Variations in Fluidity Testing. Worcester Polytechnic Institute.
[27] Le, Q., Zhang, Z., Cui, J. & Chang, S. (2009). Study on the filtering purification of AZ91 magnesium alloy. Materials Science Forum. 610-613, 754-757. DOI: 10.4028/www.scientific.net/MSF.610-613.754.
[28] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.

Go to article

Authors and Affiliations

H. Kapłon
1
ORCID: ORCID
A. Dmitruk
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

A method for the open-cell aluminum foams manufacturing by investment casting was presented. Among mechanical properties, compressive behaviour was investigated. The thermal performance of the fabricated foams used as heat transfer enhancers in the heat accumulator based on phase change material (paraffin) was studied during charging-discharging working cycles in terms of temperature distribution. The influence of the foam on the thermal conductivity of the system was examined, revealing a two-fold increase in comparison to the pure PCM. The proposed castings were subjected to cyclic stresses during PCM’s subsequent contraction and expansion, while any casting defects present in the structure may deteriorate their durability. The manufactured heat transfers enhancers were found suitable for up to several dozen of cycles. The applied solution helped to facilitate the heat transfer resulting in more homogeneous temperature distribution and reduction of the charging period’s duration.
Go to article

Bibliography

[1] Bisht, A., Patel, V.K. & Gangil, B. (2019). Future of metal foam materials in automotive industry. In Jitendra K. K., Shantanu B., Vinay K. P. & Vikram K. (Eds.), Automotive Tribology, (pp. 51-63). Springer, Singapore, DOI: 10.1007/978-981-15-0434-1_4.
[2] Almonti, D., Baiocco, G., Mingione, E. & Ucciardello, N. (2020). Evaluation of the effects of the metal foams geometrical features on thermal and fluid-dynamical behavior in forced convection. The International Journal of Advanced Manufacturing Technology. 111(3), 1157-1172. DOI: 10.1007/S00170-020-06092-1.
[3] Sivasankaran, S. & Mallawi, F.O.M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering. 26, 101095. DOI: 10.1016/J.CSITE.2021.101095.
[4] Anglani, A., Pacella, M. (2021). Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. In 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 15-17 July 2020 (pp. 307–312). Gulf of Naples, Italy: The International Academy for Production Engineering.
[5] Anglani, A., Pacella, M. (2018). Logistic Regression and Response Surface Design for Statistical Modeling of Investment Casting Process in Metal Foam Production. In 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 19-21 July 2017 (pp. 504–509). Gulf of Naples, Italy: The International Academy for Production Engineering.
[6] Kryca, J., Iwaniszyn, M., Piątek, M., Jodłowski, P.J., Jędrzejczyk, R., Pędrys, R., Wróbel, A., Łojewska, J., Kołodziej, A. (2016). Structured foam reactor with CuSSZ-13 catalyst for SCR of NOx with ammonia. Topics in Catalysis. 59(10), 887-894. DOI: 10.1007/S11244-016-0564-4.
[7] Alamdari, A. (2015). Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 27, 934-944. DOI: 10.1016/J.JNGSE.2015.09.037.
[8] Vilniškis, T., Januševičius, T. & Baltrėnas, P. (2020). Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation. Noise Control Engineering Journal. 68(3), 199-208. DOI: 10.3397/1/376817.
[9] Hua, L., Sun, H. & Gu Jiangsu, J. (2016). Foam metal metamaterial panel for mechanical waves isolation. Conference: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. DOI: 10.1117/12.2219470.
[10] Wang, Y., Jiang, S., Wu, Z., Shao, H., Wang, K. & Wang, L. (2018). Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. Journal of Loss Prevention in the Process Industries. 56, 451-457. DOI: 10.1016/J.JLP.2018.09.009.
[11] Marx, J. & Rabiei, A. (2017). Overview of composite metal foams and their properties and performance. Advanced Engineering Materials. 19(11), 1600776. DOI: 10.1002/ADEM.201600776.
[12] Tong, X., Shi, Z., Xu, L., Lin, J., Zhang, D., Wang, K., Li, Y., Wen, C. (2020). Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomaterialia. 102, 481-492. DOI: 10.1016/J.ACTBIO.2019.11.031
[13] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46, 559-632. DOI: 10.1016/S0079-6425(00)00002-5.
[14] Schüler, P., Fischer, S.F., Bührig-Polaczek, A. & Fleck, C. (2013). Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading. Materials Science and Engineering: A, 587, 250-261. DOI: 10.1016/J.MSEA.2013.08.030.
[15] Schüler, P., Frank, R., Uebel, D., Fischer, S.F., Bührig-Polaczek, A. & Fleck, C. (2016). Influence of heat treatments on the microstructure and mechanical behaviour of open cell AlSi7Mg0.3 foams on different lengthscales. Acta Materialia. 109, 32-45. DOI: 10.1016/J.ACTAMAT.2016.02.041.
[16] Luksch, J., Bleistein, T., Koenig, K., Adrien, J., Maire, E. & Jung, A. (2021). Microstructural damage behaviour of Al foams. Acta Materialia. 208, 116739. DOI: 10.1016/J.ACTAMAT.2021.116739.
[17] Sathaiah, S., Dubey, R., Pandey, A., Gorhe, N.R., Joshi, T. C., Chilla, V., Muchhala, D., Mondal, D.P. (2021). Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam. Materials Chemistry and Physics. 273, 125115. DOI: 10.1016/j.matchemphys.2021.125115
[18] Qu, Z. (2018). Heat transfer enhancement technique of pcms and its lattice Boltzmann modeling. In Mohsen Sheikholeslami Kandelousi (Eds.), Thermal Energy Battery with Nano-enhanced PCM. IntechOpen Limited, London, UK. DOI: 10.5772/INTECHOPEN.80574
[19] Tian, Y. & Zhao, C.Y. (2011). A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy. 36, 5539-5546. DOI: 10.1016/j.energy.2011.07.019.
[20] Novak, N., Vesenjak, M., Duarte, I., Tanaka, S., Hokamoto, K., Krstulović-Opara, L., Guo, B., Chen, P., Ren, Z. (2019). Compressive behaviour of closed-cell aluminium foam at different strain rates. Materials. 12(24), 4108. DOI: 10.3390/MA12244108.
[21] Naplocha, K., Dmitruk, A., Mayer, P. & Kaczmar, J.W. (2019). Design of honeycomb structures produced by investment casting. Archives of Foundry Engineering. 19(4), 76-80. DOI: 10.24425/AFE.2019.129633.
[22] Zhou, J. & Soboyejo, W.O. (2004). Compression–compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment. Materials Science and Engineering A. 369(1-2), 23-35. DOI: 10.1016/J.MSEA.2003.08.009.
[23] Jang, W.Y. & Kyriakides, S. (2009). On the crushing of aluminum open-cell foams: Part I. Experiments. International Journal of Solids and Structures. 46(3-4), 617-634. DOI: 10.1016/J.IJSOLSTR.2008.09.008.
[24] Krstulović-Opara, L., Vesenjak, M., Duarte, I., Ren, Z. & Domazet, Z. (2016). Infrared thermography as a method for energy absorption evaluation of metal foams. Materials Today: Proceedings. 3(4), 1025-1030. DOI: 10.1016/J.MATPR.2016.03.041.
[25] Naplocha, K., Koniuszewska, A., Lichota, J. & Kaczmar, J. W. (2016). Enhancement of heat transfer in PCM by vellular Zn-Al structure. Archives of Foundry Engineering. 16(4), 91-94. DOI: 10.1515/AFE-2016-0090

Go to article

Authors and Affiliations

A. Dmitruk
1
ORCID: ORCID
H. Kapłon
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID

  1. Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland

This page uses 'cookies'. Learn more