Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The brain is subject to damage, due to ageing, physiological processes and/or disease. Some of the damage is acute in nature, such as strokes; some is more subtle, like white matter lesions. White matter lesions or hyperintensities (WMH) can be one of the first signs of micro brain damage. We implemented the Acoustocerebrography (ACG) as an easy to use method designed to capture differing states of human brain tissue and the respective changes.

Aim: The purpose of the study is to compare the efficacy of ACG and Magnetic Resonance Imaging (MRI) to detect WMH in patients with clinically silent atrial fibrillation (AF).

Methods and results: The study included 97 patients (age 66.26 ± 6.54 years) with AF. CHA2DS2-VASc score (2.5 ±1.3) and HAS BLED (1.65 ± 0.9). According to MRI data, the patients were assigned into four groups depending on the number of lesions: L0 – 0 to 4 lesions, L5 – 5 to 9 lesions, L10 – 10 to 29 lesions, and L30 – 30 or more lesions. Authors found that the ACG method clearly differentiates the groups L0 (with 0–4 lesions) and L30 (with more than 30 lesions) of WMH patients. Fisher’s Exact Test shows that this correlation is highly significant (p < 0:001).

Conclusion: ACG is a new, easy and cost-effective method for detecting WMH in patients with atrial fibrillation

Go to article

Authors and Affiliations

Wioletta Dobkowska-Chudon
Mirosław Wrobel
Emilia Frankowska
Arkadiusz Zegadlo
Andrzej Krupienicz
Andrzej Nowicki
Robert Olszewski
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present work was to determine the influence of the microstructural evolution of copper single crystals with the initial orientations of <001> and <111> after cold drawing on their corrosion resistance. Transmission electron microscopy, X-ray diffraction, and electron backscattering diffraction were used to characterize the microstructural changes. To evaluate the corrosion resistance after deformation, open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization analyses were conducted. The microstructural observations showed the presence of dislocation cell structures and shear bands in deformed sample with initial orientation <001> single crystal, as well as a strongly-developed substructure in sample <111>. The material with initial orientation of <001> was more resistive in analyzed medium than material with the initial orientation of <111>.

Go to article

Authors and Affiliations

M. Koralnik
A. Dobkowska
B. Adamczyk-Cieślak
ORCID: ORCID
J. Mizera
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the electrodeposition of nickel composite coatings reinforced with the ceramic SiC particles. A Watts type galvanic bath modified with various organic additives was used. These additives were: 2-sulfobenzoic acid imide (LSA), dioctyl sulfosuccinate sodium salt (DSS), sodium dodecyl sulfate (SDS), tris (hydroxymethyl) aminomethane (THAM) and hexamethyldisilizane (HMDS). The nickel composite coating was electrodeposited on a 2xxx aluminum alloy series substrate (EN-AW 2017) with zinc interlayer. Studies concerned the effect of the applied organic additives on properties of composite coatings such as: microstructure, microhardness, adhesion to the substrate, corrosion resistance and roughness. The structure of the coatings was assessed by scanning electron microscopy and light microscopy. Based on the studies of zeta potential it was found that the bath modification had a significant impact on the amount of the ceramic phase embedded in metal matrix. The tests conducted in a model 0.01 M KCl solution were not fully representative of the true behavior of particles in a Watts bath.

Go to article

Authors and Affiliations

M. Nowak
J. Mizera
A. Kłyszewski
A. Dobkowska
S. Boczkal
ORCID: ORCID
A. Kozik
P. Koprowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the electrodeposition of nickel composite coatings reinforced with the nano size SiC ceramic particles. The type and size of the ceramic particles or organic additives used play a important role during electrodeposition processes. A Watts type galvanic bath with various organic additives was used. These additives were: 2-sulfobenzoic acid imide, dioctyl sulfosuccinate sodium salt (DSS), sodium dodecyl sulfate, tris (hydroxymethyl) aminomethane and hexamethyldisilizane. The nickel composite coating was electrodeposited on a 2xxx aluminum alloy series substrate (EN-AW 2017) with zinc interlayer. The work concerns the determination of the impact of the change in the zeta potential of SiC nanoceramic particles used on properties of composite coatings (wear resistance, corrosion, etc.). The paper characterized the composite nickel coatings on aluminum alloy using SEM techniques, wear resistance tests by TABER method and coating adhesion to the substrate using the “scratch test” method. The corrosion resistance of coatings was also tested using electrochemical methods. The research allowed to determine the effect of SiC nanoceramic particle size on the value of the zeta potential in the model KCl solution.

Go to article

Authors and Affiliations

M. Nowak
J. Mizera
A. Kłyszewski
A. Dobkowska
S. Boczkal
ORCID: ORCID
A. Kozik
P. Koprowski
ORCID: ORCID

This page uses 'cookies'. Learn more