Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 34
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A new extraction process suitable for treating refractory CuCo2S4 under atmospheric pressure acidic leaching conditions was investigated. The effect of variables such as oxidant species, liquid-to-solid ratio, leaching time, oxidizing agent and mineral quality ratio, H2SO4 concentration, temperature and sodium chloride concentration on the extraction efficiency of Co, Cu and Fe from CuCo2S4 were investigated. Under optimal conditions including P80-P90 of the sample was d < 0.0074 mm, stirring speed of 400 rpm, leaching time of 8 h with sodium chlorate (NaClO3) and mineral quality ratio of 0.5, 2 mol/L H2SO4, liquid-to-solid ratio of 7, leaching temperature of 90°C and 4 mol/L sodium chloride. The leaching efficiency of Co, Cu, and Fe were nearly 97.08%, 100%, and 92.45%, respectively. Furthermore, the contents of cobalt and copper in leaching residue were all less than 0.4 wt.%, which satisfies the requirements of industrial production.

Go to article

Authors and Affiliations

Bo Dong
Jian-Hui Wu
Jun Wu
ORCID: ORCID
Xian-Peng Zhang
Jing-Jun Zhai
Download PDF Download RIS Download Bibtex

Abstract

The safe and reliable operation of pressurized water reactors (PWRs) depends on the integrity of structural material. In particular, the failure of steam generator (SG) tubes on the secondary side is one of the major concerns of operating nuclear power plants. To establish remediation techniques and manage damage, it is necessary to articulate the mechanism through which various impurities affect the SG tubes. This research aims to understand the effect of impurities (e.g., S, Pb, and Cl) on the stress corrosion cracking of Alloy 600 and 690.

Go to article

Authors and Affiliations

Jung-Ho Shin
Dong-Jin Kim
Download PDF Download RIS Download Bibtex

Abstract

A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ), increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

Go to article

Authors and Affiliations

Huilong Dong
Boyu Zheng
Feifan Chen
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design, fabrication and testing of an improved thin-film thermal converter based on an electro-thermally excited and piezo-resistively detected micro-bridge resonator. The resonant thermal converter comprises a bifilar heater and an opposing micro-bridge resonator. When the micro-bridge resonator absorbs the radiant heat from the heater, its axial strain changes, then its resonant frequency follows. Therefore the alternating voltage or current can be transferred to the equivalent DC quantity. A non-contact temperature sensing mechanism eliminates heat loss from thermopiles and reduces coupling capacitance between the temperature sensor and the heater compared with traditional thin-film thermal converters based on thermopiles. In addition, the quasi-digital output of the resonant thin-film thermal converter eliminates such problems as intensity fluctuations associated with analogue signals output by traditional thin-film thermal converters. Using the fast-reversed DC (FRDC) method, the thermoelectric transfer difference, which determines the frequency-independent part of the ac-dc transfer difference, is evaluated to be as low as 1.1 · 10−6. It indicates that the non-contact temperature sensing mechanism is a feasible method to develop a high-performance thermal converter.

Go to article

Authors and Affiliations

Lizhen Dong
Jianqiang Han
Peng Zhang
Zhengqian Zhao
Bing Cheng
Dong Han
Download PDF Download RIS Download Bibtex

Abstract

With the increasing number of electric vehicles (EVs), the disordered charging of a large number of EVs will have a large influence on the power grid. The problems of charging and discharging optimization management for EVs are studied in this paper. The distribution of characteristic quantities of charging behaviour such as the starting time and charging duration are analysed. The results show that charging distribution is in line with a logarithmic normal distribution. An EV charging behaviour model is established, and error calibration is carried out. The result shows that the error is within its permitted scope. The daily EV charge load is obtained by using the Latin hypercube Monte Carlo statistical method. Genetic particle swarm optimization (PSO) is proposed to optimize the proportion of AC 1, AC 2 and DC charging equipment, and the optimal solution can not only meet the needs of users but also reduce equipment investment and the EV peak valley difference, so the effectiveness of the method is verified.

Go to article

Authors and Affiliations

Zhiyan Zhang
Kailang Dong
Xiaochen Pang
Hongfei Zhao
Aifang Wang
Download PDF Download RIS Download Bibtex

Abstract

Magnetic-geared permanent magnet (MGPM) electrical machine is a new type of machine by incorporating magnetic gear into PM electrical machine, and it may be in operation with low-speed, high-torque and direct-driven. In this paper, three types of MGPM machines are present, and a quantitative comparison among them is performed by finite element analysis (FEA). The magnetic field distribution, stable torque and back EMF are obtained at no-load. The results show that three types of MGPM machine are suitable for different application fields respectively according to their own advantages, such as high torque and back EMF, which form an important foundation for MGPM electrical machine research.
Go to article

Authors and Affiliations

Xiping Liu
Dong Chen
Liang Yi
Chao Zhang
Min Wang
Download PDF Download RIS Download Bibtex

Abstract

The advance of MEMS-based inertial sensors successfully expands their applications to small unmanned

aerial vehicles (UAV), thus resulting in the challenge of reliable and accurate in-flight alignment for airborne

MEMS-based inertial navigation system (INS). In order to strengthen the rapid response capability

for UAVs, this paper proposes a robust in-flight alignment scheme for airborne MEMS-INS aided by global

navigation satellite system (GNSS). Aggravated by noisy MEMS sensors and complicated flight dynamics,

a rotation-vector-based attitude determination method is devised to tackle the in-flight coarse alignment

problem, and the technique of innovation-based robust Kalman filtering is used to handle the adverse impacts

of measurement outliers in GNSS solutions. The results of flight test have indicated that the proposed

alignment approach can accomplish accurate and reliable in-flight alignment in cases of measurement outliers,

which has a significant performance improvement compared with its traditional counterparts.

Go to article

Authors and Affiliations

Dingjie Wang
Yi Dong
Qingsong Li
Jie Wu
Yule Wen
Download PDF Download RIS Download Bibtex

Abstract

Accurate flatness measurement of silicon wafers is affected greatly by the gravity-induced deflection (GID) of the wafers, especially for large and thin wafers. The three-point-support method is a preferred method for the measurement, in which the GID uniquely determined by the positions of the supports could be calculated and subtracted. The accurate calculation of GID is affected by the initial stress of the wafer and the positioning errors of the supports. In this paper, a finite element model (FEM) including the effect of initial stress was developed to calculate GID. The influence of the initial stress of the wafer on GID calculation was investigated and verified by experiment. A systematic study of the effects of positioning errors of the support ball and the wafer on GID calculation was conducted. The results showed that the effect of the initial stress could not be neglected for ground wafers. The wafer positioning error and the circumferential error of the support were the most influential factors while the effect of the vertical positioning error was negligible in GID calculation.
Go to article

Authors and Affiliations

Haijun Liu
Zhigang Dong
Renke Kang
Ping Zhou
Shang Gao
Download PDF Download RIS Download Bibtex

Abstract

In this paper, 3 typical organic fluids were selected as working fluids for a sample slag washing water binary power plants. In this system, the working fluids obtain the thermal energy from slag washing water sources. Thus, it plays a significant role on the cycle performance to select the suitable working fluid. Energy and exergy efficiencies of 3 typical organic fluids were calculated. Dry type fluids (i.e., R227ea) showed higher energy and exergy efficiencies. Conversely, wet fluids (i.e., R143a and R290) indicated lower energy and exergy efficiencies, respectively.

Słowa kluczowe

Go to article

Authors and Affiliations

Zi-Ao Li
Yanna Liu
Peng Dong
Yingjie Zhang
Song Xiao
Download PDF Download RIS Download Bibtex

Abstract

To investigate the adsorptive properties of a local laterite deposited in Chenzhou, Hunan province, China, the adsorptive properties of the natural laterite were investigated by batch technique in this study. The effects of contact time, pH, ionic strength, temperature, and the concentration on adsorption properties were also analyzed. The obtained experimental results show that the main mineral composition of laterite is kaolinite and montmorillonite. The adsorption process achieved equilibrium within 60 minutes and 90 minutes for Sr(II) and Cr(VI), respectively. The adsorption capacities for Cr(VI) and Sr(II) by the laterite were about 7.25 mg·g-1 and 8.35 mg·g-1 under the given experimental conditions, respectively. The equilibrium adsorption data were fitted to the second-order kinetic equation. The adsorption capacity for Sr(II) onto the laterite increased with increasing pH from 3–11 but decreased with increasing ionic strength from 0.001 to 1.0 M NaCl. The Sr(II) adsorption reaction on laterite was endothermic and the process of adsorption was favored at high temperature. Similarly, the adsorption capacity for Cr(VI) onto the laterite increased with increasing pH from 3–11, however, the ionic strength and temperature had an insignificant effect on Cr(VI) adsorption. The adsorption of Cr(VI) and Sr(II) was dominated by ion exchange and surface complexation in this work. Furthermore, the Langmuir and Freundlich adsorption isotherm model was used for the description of the adsorption process. The results suggest that the studied laterite samples can be effectively used for the treatment of contaminated wastewaters.

Go to article

Authors and Affiliations

Yong He
Yong-gui Chen
Ke-neng Zhang
Wei-min Ye
Dong-yu Wu
Download PDF Download RIS Download Bibtex

Abstract

Among the various thin film coating techniques, atomic layer deposition (ALD) has features of good controllability of the thickness, excellent step-coverage in 3-dimensional object even in the sub-nm thickness range at the relatively low deposition temperature. In this study, SnO2 thin films were grown by ALD in the variation of substrate temperatures from 150 to 250°C. Even such a low temperature may influence on the growth kinetics of the ALD reaction and thus the physical characteristics of thin films, such as crystallinity, film density and optical band gap, etc. We observed the decrease of the growth rate with increasing substrate temperature, at the same time, the density of the film was decreased with increasing temperature. Steric hindrance effect of the precursor molecule was attributed to the inverse relationship of the growth temperature and growth rate as well as the film density. Optical indirect band gap energy (~3.6 eV) of the ALD-grown amorphous SnO2 films grown at 150°C was similar with that of the literature value, while slightly lower band gap energy (~3.4 eV) was acquired at the films grown at higher temperature.
Go to article

Authors and Affiliations

Daeho Kim
Dong Ha Kim
Doh-Hyung Riu
Byung Joon Choi
Download PDF Download RIS Download Bibtex

Abstract

Optimal random network coding is reduced complexity in computation of coding coefficients, computation of encoded packets and coefficients are such that minimal transmission bandwidth is enough to transmit coding coefficient to the destinations and decoding process can be carried out as soon as encoded packets are started being received at the destination and decoding process has lower computational complexity. But in traditional random network coding, decoding process is possible only after receiving all encoded packets at receiving nodes. Optimal random network coding also reduces the cost of computation. In this research work, coding coefficient matrix size is determined by the size of layers which defines the number of symbols or packets being involved in coding process. Coding coefficient matrix elements are defined such that it has minimal operations of addition and multiplication during coding and decoding process reducing computational complexity by introducing sparseness in coding coefficients and partial decoding is also possible with the given coding coefficient matrix with systematic sparseness in coding coefficients resulting lower triangular coding coefficients matrix. For the optimal utility of computational resources, depending upon the computational resources unoccupied such as memory available resources budget tuned windowing size is used to define the size of the coefficient matrix.

Go to article

Authors and Affiliations

Dhawa Sang Dong
Yagnya Murti Pokhrel
Anand Gachhadar
Ram Krishna Maharjan
Faizan Qamar
Iraj Sadegh Amiri
Download PDF Download RIS Download Bibtex

Abstract

This study was attempted to study for recovery of Li as Li2CO3 from cathode active material, especially NCA (LiNiCoAlO2), recovered from spent lithium ion batteries. This consists of two major processes, carbonation using CO2 and water leaching. Carbonation using CO2 was performed at 600ºC, 700ºC and 800ºC, and NCA (LiNiCoAlO2) was phase-separated into Li2CO3, NiO and CoO. The water leaching process using the differences in solubility was performed to obtain the optimum conditions by using the washing time and the ratio of the sample to the distilled water as variables. As a result, NCA (LiNiCoAlO2) was phase-separated into Li2CO3 and NiO, CoO at 700ºC, and Li2CO3 in water was recovered through vacuum filtration after 1 hour at a 1:30 weight ratio of the powder and distilled water. Finally, Li2CO3 containing Li of more than 98 wt.% was recovered.

Go to article

Authors and Affiliations

Shun-Myung Shin
Dong-Ju Shin
Sung-Ho Joo
Jei-Pil Wang Wang
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the microstructure and high temperature oxidation properties of Fe-25Cr-20Ni-1.5Nb, HK30 alloy manufactured by metal injection molding (MIM) process. The powder used in MIM had a bi-modal size distribution of 0.11 and 9.19 μm and had a spherical shape. The initial powder consisted of γ-Fe and Cr23C6 phases. Microstructural observation of the manufactured (MIMed) HK30 alloy confirmed Cr23C6 along the grain boundary of the γ-Fe matrix, and NbC was distributed evenly on the grain boundary and in the grain. After a 24-hour high temperature oxidation test at air atmospheres of 1000, 1100 and 1200°C, the oxidation weight measured 0.72, 1.11 and 2.29 mg/cm,2 respectively. Cross-sectional observation of the oxidation specimen identified a dense Cr2O3 oxide layer at 1000°C condition, and the thickness of the oxide layer increased as the oxidation temperature increased. At 1100°C and 1200°C oxidation temperatures, Fe-rich oxide was also formed on the dense Cr2O3 oxide layer. Based on the above findings, this study identified the high-temperature oxidation mechanism of HK30 alloy manufactured by MIM.

Go to article

Authors and Affiliations

Dong-Yeol Wi
Young-Kyun Kim
Tae-Sik Yoon
Kee-Ahn Lee
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out to evaluate the aspect of microstructure and mechanical property development on additive manufactured pure Ti at elevated heat-input. For this work, pure Ti powder (commercial purity, grade 1) was selected, and selective laser melting was conducted from 0.5 to 1.4 J/mm. As a result, increase in heat-input led to the significant grain growth form 4 μm to 12 μm, accompanying with the change of grain shape, correctly widmanstätten structured grains. In addition, Vickers microhardness was notably increased from 228 Hv to 358 Hv in accordance with elevated heat-input, which was attributed to the increased concentration of oxygen and nitrogen mainly occurred during selected laser melting process.

Go to article

Authors and Affiliations

Dong-Jin Kim
Hyung-Giun Kim
Ji-Sun Kim
Kuk-Hyun Song
Download PDF Download RIS Download Bibtex

Abstract

Due to the difficulty of detecting traces of organic acid mixture in an aqueous sample and the complexity of resolving UV-Vis spectra effectively, a combinatory method based on a self-made radical electric focusing solid phase extraction (REFSPE) device, UV-Vis detection and partial least squares (PLS) calculation is proposed here. In this study, REFSPE was used to enhance the extraction process of analytes between the aqueous phase and the membrane phase to enrich the trace of mixed organic acid efficiently. Then, the analytes, which were eluted from the adsorption film by ethanol with the assistance of an ultrasonic cleaning machine, were detected with UV-Vis spectrophotometry. After that, the PLS method was introduced to solve the problem of overlapping peaks in UV-Vis spectra of mixed substances and to quantify each compound. The linearly dependent coefficients between the predicted value of the model and the actual concentration of the sample were all higher than 0.99. The limit values of detection for benzoic acid, phthalic acid and p-toluene sulfonic acid were found at 9.9 µg/L, 12.2 µg/L and 13.8 µg/L with the relative recovery values between 84.8% and 117.9%. The RSD (n = 20) values of each component are 1.17%, 1.11% and 0.86%, respectively. Therefore, the proposed combined method can determine traces of complex materials in an aqueous sample efficiently and has wonderful potential applications.
Go to article

Authors and Affiliations

Guo Yugao
Liu Xia
Liu Jianyi
Bian Xihui
Zhang Qingyin
Pan Jie
Wan Dong

This page uses 'cookies'. Learn more