Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Energy is a basic industry for any economy and ensures the country’s security, including economic

security. The purpose of the article is to analyze the reform of the energy sector in Ukraine

for successful integration into the energy sector of the European Union. The state of the energy

industry from 2003 to 2018 is analyzed. The following main reasons for the decrease in electricity

generation in Ukraine are identified – a decrease in production volumes, the annexation of Crimea

and the anti-terrorist operation in the east of Ukraine, a decrease in the volume of energy output

from Thermal Power Plants due to aging capacities, difficulties with raw materials, low efficiency,

which, however, has a good effect on the environment due to a decrease carbon dioxide emissions.

The directions of reforming the electric power industry of Ukraine are considered in the context of

“industry-market-company”. Four electricity market models are analyzed and the new model of the

competitor’s market for electricity in Ukraine with contract market, spot market, the balancing market

is substantiated. The structure of the segments of the new electricity market and the participants

are proposed. More than half of the electricity market is provided by nuclear power, which ranks

the 5th in the world in terms of installed capacity. The analysis of the performance indicators of the

nuclear company for 2007–2019 showed significant reserves for the company’s growth, which are

being successfully implemented through strategic development projects and phased corporatization

of the company as a tool of unbundling. The main challenges of implementation a new market

model are analyzed and solutions are proposed.

Go to article

Authors and Affiliations

Hanna Doroshuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The evolution of the economy and the formation of Industry 4.0 lead to an increase in the importance of intangible assets and the digitization of all processes at energy enterprises. This involves the use of technologies such as the Internet of Things, Big Data, predictive analytics, cloud computing, machine learning, artificial intelligence, robotics, 3D printing, augmented reality etc. Of particular interest is the use of artificial intelligence in the energy sector, which opens up such prospects as increased safety in energy generation, increased energy efficiency, and balanced energy-generation processes. The peculiarity of this particular instrument of Industry 4.0 is that it combines the processes of digitalization and intellectualization in the enterprise and forms a new part of the intellectual capital of the enterprise. The implementation of artificial intelligence in the activities of energy companies requires consideration of the features and stages of implementation. For this purpose, a conceptual model of artificial intelligence implementation at energy enterprises has been formed, which contains: the formation of the implementation strategy; the design process; operation and assessment of artificial intelligence. The introduction of artificial intelligence is a large-scale and rather costly project; therefore, it is of interest to assess the effectiveness of using artificial intelligence in the activities of energy companies. Efficiency measurement is proposed in the following areas: assessment of economic, scientific and technical, social, marketing, resource, financial, environmental, regional, ethical and cultural effects as well as assessment of the types of risks associated with the introduction of artificial intelligence.
Go to article

Bibliography

Armenakis et al. 1993 – Armenakis, A.A., Harris, S.G. and Mossholder, K.W. 1993. Creating Readiness for Organizational Change. Human Relations 46, pp. 681–703.
Artificial intelligence the next digital frontier? McKinsey Global Institute. July 2017. 80 p. [Online] https://www.mckinsey.com/~/media/mckinsey/industries/advanced%20electronics/our%20insights/how%20 artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/mgi-artificial-intelligence- discussion-paper.ashx [Accessed: 2021-07-15].
Bakke, D. 2005. Joy a work: A Revolutionary Approach to Fun on the Job. Seattle: PVG, 314 pp.
Behrens, W. and Hawranek, P.M. 1978. Manual for the preparation of industrial feasibility studies. NY: Unated Nations, 404 pp.
Berger, R. 2013. How to Survive in the VUCA World. Hamburg: Roland Berger, 245 pp.
Blommaert, Т. and Broek, S. 2017. Management in Singularity: From linear to exponential management. Vakmedianet; 1 edition, 172 pp.
Borowski, P.F. 2016. Development strategies for electric utilities. Acta Energetica 4, pp. 16–21.
Borowski, P. 2021. Innovative Processes in Managing an Enterprise from the Energy and Food Sector in the Era of Industry 4.0. Processes 9(2), 381, DOI: 10.3390/pr9020381.
Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 352 pp.
Cheatham et al. 2019 – Cheatham, B., Javanmardian, K. and Samandari, H. 2019. Confronting the risks of artificial intelligence. [Online] https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/confronting-the-risks-of-artificial-intelligence [Accessed: 2021-07-15].
Doroshuk, H. 2019. Organizational development: theory, methodology, practice (Організаційний розвиток: теорія, методологія, практика). Odesa: Osvita Ukrainy, 368 pp. (in Ukrainian).
Doroshuk, H. 2020. Reform of the electricity sector in Ukraine – liberalization of the market and corporatization of companies. Polityka Energetyczna – Energy Policy Journal 23(4), pр. 105–122. [Online] https://epj.min-pan.krakow.pl/Reform-of-the-electricity-sector-in-Ukraine-liberalization-of-the-market- and-corporatization,127664,0,2.html/ [Accessed: 2021-07-15].
Edvinsson, L. and Malone, M. 1997. Intellectual Capital: Realizing your Company’s True Value by Finding its Hidden Brainpower. New York, NY: Harper Collins.
Firer, S. and Williams, S.M. 2003. Intellectual capital and traditional measures of corporate performance. Journal of Intellectual Capital 4(3) , pp. 348–360, DOI: 10.1108/14691930310487806.
Hoe, S.L. 2019. The topicality of the learning organization: Is the concept still relevant today? [In:] The Oxford Handbook of the Learning Organization, Oxford University Press: Oxford, UK, pp. 18–32.
Jackson, P.C. Jr. 2019. Introduction to Artificial Intelligence. New York: Dover Publication Inc., 170 pp. Jensen, P.E. 2005. A contextual theory of learning and the learning organization. Knowledge Process Management 12, pp. 53–64, DOI: 10.1002/kpm.217.
Jones, M.T. 2017. A Beginner’s Guide to Artificial Intelligence, Machine Learning and Cognitive Computing. [Online] https://developer.ibm.com/articles/cc-beginner-guide-machine-learning-ai-cognitive/ [Accessed: 2021-07-15].
Kinelski, G. 2020. The main factors of successful project management in the aspect of energy enterprises’ efficiency in the digital economy environment. Polityka Energetyczna – Energy Policy Journal 23(3), pр. 5–20, DOI: 10.33223/epj/126435.
Koistinen, P. 2021. Toward learning organization – Practices in nuclear power plants. [In:] Human Factors in the Nuclear Industry, Elsevier BV: Amsterdam, The Netherlands, pp. 239–247.
Laloux, Fr. 2014. Reinventing Organizations: A Guide to Creating Organizations Inspired by the Next Stage of Human Consciousness. Brussels: Nelson&Parker, 379 pp.
Levy, F. 2009. A simulated approach to valuing knowledge capital. Washington: The George Washington University, 189 pp.
Nazari, J.A. and Herremans, I.M. 2007. Extending VAIC model: measuring intellectual capital components. Journal of Intellectual Capital 8(4), DOI: 10.1108/14691930710830774.
Oklander et al. 2018 – Oklander, M., Oklander, T., Yashkina, O., Pedko, I. and Chaikovska, M. 2018. Analysis of technological innovations in digital marketing. Eastern-European Journal of Enterprise Technologies 5/3 (95), pp. 80–91, DOI: 10.1088/1755-1315/440/2/022026.
Pan et al. 2020 – Pan, T., Hu, T. and Geng, J. 2020. View learning organization in a situational perspective. IOP Conference Series: Earth and Environmental Science 440 pp.
Piano, S.L. 2020. Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward. Humanities and Social Science Communication 7, DOI: 10.1057/s41599-020-0501-9.
Romer, P.M. 1994. The Origins of Endogenous Growth. The Journal of Economic Perspectives 8(1), pp. 3–22.
Sozontov et al. 2019 – Sozontov, A., Ivanova, M. and Gibadullin, A. 2019. Implementation of artificial intelligence in the electric power industry. [In:] E3S Web of Conferences 114, DOI: 10.1051/e3sconf/201911401009. EDP Sciences.
Toffler, A. 1984. The Third Wave. NY: Bantam, 560 pp.
Tortorella et al. 2020 – Tortorella, G.L., Vergara, A.M.C., Garza-Reyes, J.A. and Sawhney, R. 2020. Organizational learning paths based upon Industry 4.0 adoption: An empirical study with Brazilian manufacturers. International Journal of Production Economics 219, pp. 284–294, DOI: 10.1016/j.ijpe.2019.06.023.
Von Ketelhod, Wöcke, A. 2008. The impact of electricity crises on the consumption behaviour of small and medium enterprises. Journal of Energy in Southern Africa 19(1), pp. 4–12
Go to article

Authors and Affiliations

Hanna Doroshuk
1
ORCID: ORCID

  1. Department of Menegement, Odessa Polytechnic State University, Ukraine

This page uses 'cookies'. Learn more