Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Proposed is the analysis of steam condensation in the presence of inert gases in a power plant condenser. The presence of inert, noncondensable gases in a condenser is highly undesirable due to its negative effect on the efficiency of the entire cycle. In general, thermodynamics has not provided an explicit criterion for assessing the irreversible heat transfer process. The method presented here enables to evaluate precisely processes occurring in power plant condensers. This real process is of particular interest as it involves a number of thermal layers through which heat transfer is observed. The analysis was performed using a simple, known in the literature and well verified Berman’s model of steam condensation in the presence of non-condensable gases. Adapted to the geometry of the condenser, the model enables, for instance, to recognise places where non-condensable gases are concentrated. By describing with sufficient precision thermodynamic processes taking place in the vicinity of the heat transfer area segment, it is possible to determine the distributions of thermodynamic parameters on the boundaries between successive layers. The obtained results allow for the recognition of processes which contribute in varying degrees to irreversible energy degradation during steam condensation in various parts of the examined device.

Go to article

Authors and Affiliations

Zbigniew Drożyński
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer is an irreversible process. This article defines the entropy increment as a measure of energy degradation in heat transfer realized in typical surface heat exchangers. As an example of the proposed entropy increase method, presented below are the calculations for heat exchangers working in a typical Clausius-Rankine cycle. The entropy increase in such exchangers inevitably leads to increased fuel consumption and, as a further consequence, to increased carbon dioxide emission.

Go to article

Authors and Affiliations

Zbigniew Drożyński
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamics deals with irreversible transformations of substances. Every thermodynamic property of a substance, as a function of two parameters describing its state, can be illustrated as a simply connected manifold. The term manifold stands for the Methods of Geometrical Representation of Thermodynamic Properties of Substances by Means of Surfaces. Generally, every transformation of a substance changes its energy (or enthalpy) by heat transfer and work done on it. All such changes (transformations) are considered to be irreversible and can be described using appropriate manifolds. Studies show that every transformation is associated with the degradation of energy. Such relations (between heat, work and other forms of energy or enthalpy) can be described by the Pfaff formulas and their integrations.

This article discusses the issue of irreversible energy degradation in heat transfer between two fluids. Irreversible heat transfer between separated fluids most often occurs through surface heat exchangers. All such processes are determined by convective heat transfer in thermal boundary layers and conduction through the wall. Consequently, entropy changes of fluids in heat and mass transfer can be observed in these layers. While the entropy rate of the heating fluid is negative and that of the heated medium is positive, the sum of entropy changes of all substances involved in the heat transfer process is always positive. These sums, known as entropy increase (entropy generation), can be interpreted as the measure of irreversible degradation of energy in heat transfer processes. The consequence of this degradation is that an arbitrary engine powered by the degraded (lower-temperature) heat flux will operate at a lower efficiency. The significance of this discussion relates especially to cases in power plants and cooling systems where surface heat exchangers are used. In the discussion proposed is the entropy increase as a criterion of irreversible energy degradation in heat transfer. Such introduced measure of effectiveness leads to an analysis of local overall heat transfer coefficient optimization on the cone-shaped manifold.

Go to article

Authors and Affiliations

Zbigniew Drożyński

This page uses 'cookies'. Learn more