Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Power distance is one of the most researched dimensions of culture in Geert Hofstede’s framework. The vast majority of scholars refer to power distance as though it were something self-evident. Despite the hundreds of studies conducted on the basis of power distance, to date no one has seriously tried to propose a reconceptualization of power distance. Against that background, this paper aims to redefine Hofstede’s concept of power distance. It focuses on formulating a sketch of the three-level concept of power distance that essentially refers to Hofstedian tradition, but is at the same time entangled in different ontological and epistemological assumptions on the social world. The proposed way of understanding power distance creates space for, among other things, a more interactionfocused study on power dynamics in various settings. It also provides the possibility of formulating completely new hypotheses concerning psychological and sociological dimensions of exercising power.
Go to article

Bibliography

1. Ailon, Galit. 2006. What B Would Otherwise Do: A Critique of Conceptualizations of ‘Power’ in Organizational Theory. Organization, 13, 6: 771–800. DOI: 10.1177/1350508406068504.
2. Ailon, Galit. 2008. Mirror, Mirror On the Wall: Culture’s Consequences in a Value Test of its Own Design. Academy of Management Review, 33, 4: 885–904. DOI: 10.5465/amr.2008.34421995.
3. Ailon, Galit. 2009. A Reply to Geert Hofstede. Academy of Management Review, 34, 3: 571–573. DOI: 10.5465/amr.2009.40633815.
4. Arendt, Hannah. 1970. On Violence. New York: Harcourt, Brace, Jovanovitch.
5. Baskerville, Rachel F. 2003. Hofstede Never Studied Culture. Accounting, Organizations and Society, 28, 1: 1–14. DOI: 10.1016/S0361-3682(01)00048-4.
6. Beugelsdijk, Sjoerd, Robbert Maseland, André van Hoorn. 2015. Are Scores on Hofstede’s Dimensions of National Culture Stable Over Time? Global Strategy Journal, 5, 3: 223–240. DOI: 10.1002/gsj.1098.
7. Beugelsdijk, Sjoerd, Tatiana Kostova, Kendall Roth. 2017. An Overview of Hofstede–inspired Country Level Culture Research in International Business Since 2006. Journal of International Business Studies. 48, 1: 30–47. DOI: 10.1057/s41267-016-0038-8.
8. Bourdieu, Pierre. 1989. Social Space and Symbolic Power. Sociological Theory, 7, 1: 14–25. DOI: 10.2307/202060.
9. Brewer, Paul, Sunil Venaik. 2014. The Ecological Fallacy in National Culture Research. Organization Studies, 35, 7: 1063–1086. DOI: 10.1177/0170840613517602.
10. Brockner, Joel T. et al. 2001. Culture and Procedural Justice: The Influence of Power Distance on Reactions to Voice. Journal of Experimental Social Psychology, 37, 4: 300–315. DOI: 10.1006/jesp.2000.1451.
11. Chiang, Fiona. 2005. A Critical Examination of Hofstede’s Thesis and its Application to International Reward Management. The International Journal of Human Resource Management, 16, 9: 1545–1563. DOI: 10.1080/09585190500239044.
12. Dahl, Robert A. 1957. The Concept of Power. Behavioral Science, 2, 3: 201–215. DOI: 10.1002/bs.3830020303.
13. Devinney, Timothy M., Jan Hohberger. 2017. The Past is Prologue: Moving on from Culture’s Consequences. Journal of International Business Studies, 48, 1: 48–62. DOI: 10.1057/s41267-016-0034-z
14. Dorfman, Peter W., Jon P. Howell. 1988. Dimensions of National Culture and Effective Leadership Patterns: Hofstede Revisited. Advances in International Comparative Management, 3: 127–150.
15. Dovey, Kim. 1999. Framing Places: Mediating Power in Built Form. London and New York: Routledge.
16. Dudek, Michał, Mateusz Stępień. 2021. Courtroom Power Distance Dynamics. Dordrecht: Springer. (forthcoming).
17. Earley, P. Christopher, Miriam Erez. 1997. The Transplanted Executive: Why You Need to Understand How Workers in Other Countries See the World Differently. New York: Oxford University Press.
18. Fang, Tony. 2005. From “Onion” to “Ocean”. Paradox and Change in National Cultures. International Studies of Management & Organization, 35, 4: 71–90. DOI: 10.1080/00208825.2005.11043743.
19. Forst, Rainer. 2017. Normativity and Power. Analyzing Social Orders of Justification. Oxford: Oxford University Press.
20. Foucault, Michel. 1981. Omnes et Singulatim: Towards a Criticism of “Political Reason”. In: S.M. McMurrin, ed. The Tanner Lectures on Human Values. Cambridge: Cambridge University Press, 223–254.
21. Ghosh, Apoorva. 2011. Power Distance in Organizational Contexts – A Review of Collectivist Cultures. Indian Journal of Industrial Relations, 47, 1: 89–101.
22. Guinote, Ana. 2010. The Situated Focus Theory of Power. In: A. Guinote. T.K Vescio, eds. The Social Psychology of Power. New York: The Guilford Press, 141–173.
23. Habermas, Jurgen. 1977. Hannah Arendt’s Communications Concept of Power. Social Research, 44, 1: 3–24.
24. Haugaard, Mark, ed. 2002. Power: A Reader. Manchester and New York: Manchester University Press.
25. Hayward, Clarissa Rile. 2004. De–Facing Power. Cambridge: Cambridge University Press.
26. Hofstede, Geert. 2001. Culture’s Consequences: Comparing Values, Behaviors, Institutions, and Organizations Across Nations (2nd ed.). Thousand Oaks, CA: Sage.
27. Hofstede, Geert. 2002. Dimensions Do Not Exist: A Reply to Brendan McSweeney. Human Relations, 55, 11: 1355–1361. DOI: 10.1177/00187267025511004.
28. Hofstede, Geert. 2003. What is Culture? A Reply to Baskerville. Accounting, Organizations and Society, 28: 811–813. DOI: 10.1016/S0361-3682(03)00018-7.
29. Hofstede, Geert. 2006. What Did GLOBE Really Measure? Researchers’ Minds Versus Respondents’ Minds. Journal of International Business Studies, 37, 6: 882–896. DOI: 10.1057/palgrave.jibs.8400233.
30. Hofstede, Geert. 2009. Who Is the Fairest of Them All? Galit Ailon’s Mirror. Academy of Management Review, 34, 3: 570–571. DOI: 10.5465/amr.2009.40633746.
31. Hofstede, Geert, Gert J. Hofstede, Michael Minkov. 2010. Cultures and Organizations: Software of the Mind (3rd ed.). New York: McGraw–Hill.
32. Kirkman, Bradley L., Kevin B. Lowe, Cristina B. Gibson. 2006. A Quarter Century of Culture’s Consequences: A Review of Empirical Research Incorporating Hofstede’s Cultural Value Framework. Journal of International Business Studies, 37: 285–320. DOI: 10.1057/palgrave.jibs.8400202.
33. Kirkman, Bradley L. et al. 2009. Individual Power Distance Orientation and Follower Reactions to Transformational Leaders: A Cross–level, Cross–cultural Examination. Academy of Management Journal, 52: 744–764. DOI: 10.5465/amj.2009.43669971.
34. Kwek, Dennis. 2003. Decolonizing and Re–presenting Culture’s Consequences: A Postcolonial Critique of Cross–cultural Studies in Management. In: A. Prasad, ed. Postcolonial Theory and Organizational Analysis: A Critical Engagement. Palgrave Macmillan: New York, 121–146.
35. Latour, Bruno. 2005. Reassembling the Social: An Introduction to Actor–Network–Theory. Oxford: Oxford University Press.
36. Luhmann, Niklas. 2017. Trust and Power. Cambridge: Polity Press.
37. Ly, Annelise. 2013. A Critical Discussion of Hofstede’s Concept of Power Distance, SYNAPS, 28: 51–66.
38. Markus, Thomas A. 1993. Buildings and Power: Freedom and Control in the Origin of Modern Building Types. London and New York: Routledge.
39. Maznevski, Martha L. et al. 2002. Cultural Dimensions at the Individual Level of Analysis: The Cultural Orientations Framework. International Journal of Cross Cultural Management, 2, 3: 275–295. DOI: 10.1177/147059580223001.
40. McSweeney, Brendan. 2002a. Hofstede’s Model of National Cultural Differences and Their Consequences: A Triumph of Faith – A Failure of Analysis. Human Relations, 55, 1: 89–118. DOI: 10.1177/0018726702551004.
41. McSweeney, Brendan. 2002b. The Essentials of Scholarship: A Reply to Geert Hofstede. Human Relations, 55, 11: 1363–1372. DOI: 10.1177/0018726702055011922.
42. McSweeney, Brendan. 2009. Dynamic Diversity: Variety and Variation Within Countries. Organization Studies, 30, 9: 933–957. DOI: 10.1177/0170840609338983.
43. McSweeney, Brendan, Donna Brown, Stravroula Iliopoulou. 2016. Claiming Too Much, Delivering Too Little: Testing Some of Hofstede’s Generalisations. The Irish Journal of Management, 35, 1: 34–57. DOI: 10.1515/ijm-2016-0003.
44. Minkov, Michael, Geert Hofstede. 2011. The Evolution of Hofstede’s Doctrine. Cross Cultural Management, 18, 1: 10–20. DOI: 10.1108/13527601111104269.
45. Minkov, Michael. 2018. A Revision of Hofstede’s Model of National Culture: Old Evidence and New Data From 56 Countries. Cross Cultural & Strategic Management, 25: 231–256. DOI: 10.1108/CCSM-03-2017-0033.
46. Morriss, Peter. 2002. Power: A Philosophical Analysis (2nd ed.). Manchester: Manchester University Press.
47. Moulettes, Agneta. 2007. The Absence of Women’s Voices in Hofstede’s Cultural Consequences. Women in Management Review, 22, 6: 443–455. DOI: 10.1108/09649420710778682.
48. Mulder, Mauk. 1977. Daily Power Game. Leiden: Martinus Nijhoff. Nakata, Cheryl, ed. 2009. Beyond Hofstede: Culture Frameworks for Global Marketing and Management. New York: Palgrave Macmillan.
49. Pałecki, Krzysztof. 2003. Wprowadzenie do normatywnej teorii władzy politycznej [Introduction to Normativity–centered Theory of Political Power]. In: B. Szmulik, M. Żmigrodzki, eds. Wprowadzenie do nauki o państwie i polityce [ Introduction to the Science on State and Politics], 183–217. Lublin: Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej.
50. Pałecki, Krzysztof. 2016. Wprowadzenie do dyskusji nad koncepcją opozycji politycznej [Introduction to the debate on the concept of political opposition]. Polityka i Społeczeństwo, 14, 1: 5–11. DOI: 10.15584/polispol.2016.1.1.
51. Parsons, Talcott. 1957. The Distribution of Power in American Society. World Politics, 10, 1: 123–143. DOI: 10.2307/2009229.
52. Parsons, Talcott. 1963. On the Concept of Political Power. Proceedings of the American Philosophical Society, 107, 3: 232–262.
53. Paulus, Trena M. et al. 2005. Power Distance and Group Dynamics of an International Project Team: A Case Study. Teaching in Higher Education, 10, 1: 43–55. DOI: 10.1080/1356251052000305525.
54. Pellizzoni, Luigi. 2016. Catching Up with Things? Environmental Sociology and the Material Turn in Social Theory. Environmental Sociology, 2, 4: 312–321. DOI: 10.1080/23251042.2016.1190490.
55. Phillips, Tim. 2018. The Concepts of Asymmetric and Symmetric Power Can Help Resolve the Puzzle of Altruistic and Cooperative Behaviour. Biological Reviews of the Cambridge Philosophical Society, 93, 1: 457–468. DOI: 10.1111/brv.12352.
56. Rapoport, Amos. 1990. The Meaning of the Built Environment: A Nonverbal Communication Approach. Tucson: University of Arizona Press.
57. Romm, Norma R.A., Cheng–Yi Hsu. 2002. Reconsidering the Exploration of Power Distance: An Active Case Study Approach. Omega, 30: 403–414. DOI: 10.1016/S0305-0483(02)00060-9.
58. Spector Paul E., Cary L. Cooper, Kate Sparks. 2001. An International Study of the Psychometric Properties of the Hofstede Values Survey Module 1994: A Comparison of Individual and Country/Province Level Results. Applied Psychology, 50, 2: 269–281. DOI: 10.1111/1464-0597.00058.
59. Sztompka, Piotr. 2019. O pojęciu kultury raz jeszcze [On the Concept of Culture Once Again]. Studia Socjologiczne, 1: 7–23. DOI: 10.24425/ 122488.
60. Taras, Vas, Bradley L. Kirkman, Piers Steel. 2010. Examining the Impact of Culture’s Consequences: A Three–decade, Multilevel, Meta–analytic Review of Hofstede’s Cultural Value Dimensions. Journal of Applied Psychology, 95, 5: 405–439. DOI: 10.1037/a0018938.
61. Todeva, Emanuela. 1999. Models for Comparative Analysis of Culture: The Case of Poland. The International Journal of Human Resource Management, 10, 4: 606–623. DOI: 10.1080/095851999340297.
62. Triandis, Harry C. 1993. Collectivism and Individualism as Cultural Syndromes. Cross–Cultural Research, 27, 3–4: 155–180. DOI: 10.1177/106939719302700301.
63. Tung, Rosaline L., Alain Verbeke. 2010. Beyond Hofstede and GLOBE: Improving the Quality of Cross Cultural Research. Journal of International Business Studies, 41: 1259–1274. DOI: 10.1057/jibs.2010.41.
64. Tyler, Tom R., E. Allan Lind, Yuen J. Huo. 2000. Cultural Values and Authority Relations: The Psychology of Conflict Resolution Across Cultures. Psychology, Public Policy, and Law, 6: 1138–1163. DOI: 10.1037/1076-8971.6.4.1138.
65. van den Bos, Kees et al. 2013. Delineating a Method to Study Cross-cultural Differences with Experimental Control: The Voice Effect and Countercultural Contexts Regarding Power Distance. Journal of Experimental Social Psychology, 49, 4: 624–634. DOI: 10.1016/j.jesp.2013.02.005.
66. Venkateswaran, Ramya T., Abhoy K. Ojha. 2019. Abandon Hofstede–based Research? Not Yet! A Perspective From the Philosophy of the Social Sciences. Asia Pacific Business Review, 25, 3: 413–434. DOI: 10.1080/13602381.2019.1584487.
67. Venaik, Sunil, Paul Brewer. 2016. National Culture Dimensions: The Perpetuation of Cultural Ignorance. Management Learning, 47, 5: 563–589. DOI: 10.1177/1350507616629356.
68. Warf, Barney, Santa Arias, eds. 2014. The Spatial Turn: Interdisciplinary Perspectives. New York: Routledge.
69. Zhang, Yi, Thomas M. Begley. 2011. Power Distance and Its Moderating Impact on Empowerment and Team Participation. International Journal of Human Resource Management, 22: 3601–3617. DOI: 10.1080/09585192.2011.560877.
70. Zimmerling, Ruth. 2005. Influence and Power: Variations on a Messy Theme. Dordrecht: Springer.
Go to article

Authors and Affiliations

Mateusz Stępień
1
ORCID: ORCID
Michał Dudek
1
ORCID: ORCID

  1. Uniwersytet Jagielloński
Download PDF Download RIS Download Bibtex

Abstract

Consumption of energy is one of the important indicators in developing countries, but a lot of companies from the energy sector have to cope with three key challenges, namely how to reduce their impact on the environment, how to ensure the low cost of the energy production and how to improve the system overall performance? For Polish energy market, the number of challenges is greater. The growing demand for electricity and contemporary development of nuclear power technology allow today’s design, implement new solutions for high energy conversion system low unit cost for energy and fuel production. In the present paper, numerical analysis of modular high-temperature nuclear reactor coupled with the steam cycle for electricity production has been presented. The analysed system consists of three independent cycles. The first two are high-temperature nuclear reactor cycles which are equipped with two high-temperature nuclear reactors, heat exchangers, blowers, steam generators. The third cycle is a Rankine cycle which is equipped with up to four steam turbines, that operate in the heat recovery system. The analysis of such a system shows that is possible to achieve significantly greater efficiency than offered by traditional nuclear reactor technology.

Go to article

Authors and Affiliations

Michał Dudek
ORCID: ORCID
Marek Jaszczur
Zygmunt Kolenda
Download PDF Download RIS Download Bibtex

Abstract

In this work the influence of the cavity parameters on optical losses of a simple intensity-based in-line refractive index sensor utilizing a micromachined side-hole fibre was studied by means of numerical simulations. To perform these simulations, the Authors used the finite-difference time-domain method. The proposed sensor setup consists of light source, micromachined optical fibre as a sensor head, and a detector which makes it low-cost and easy to build. The changes of the external refractive index can be, therefore, recovered by direct measurements of the transmitted intensity from which insertion loss values can be calculated. By changing geometry of the cavity micromachined into the side-hole optical fibre, it was possible to determine its influence on the final sensor sensitivity and measurements range. Based on the provided analysis of simulations results, a simple fibre optic sensor can be fabricated mainly for sensing external liquids refractive index for application in biochemistry or healthcare.
Go to article

Bibliography

  1. Grattan, K. T. V. & Sun, T. Fibre optic sensor technology: an overview. Actuator A Phys. 82, 40–61 (2000). https://doi.org/10.1016/S0924-4247(99)00368-4
  2. Zhou, X., Zhang, L. & Pang, W. Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection. Express 24, 18197–18208 (2016). https://doi.org/10.1364/OE.24.018197
  3. Rao, Y.-J. & Ran, Z.-L. Optic fibre sensors fabricated by laser-micromachining. Fiber Technol. 19 808–821 (2013). https://doi.org/10.1016/j.yofte.2013.07.016
  4. Wang, Y., Liao, C. R. & Wang, D. N. Femtosecond laser-assisted selective infiltration of microstructured optical fibres. Express 18, 18056–18060 (2010). https://doi.org/10.1364/OE.18.018056
  5. Pallarés-Aldeiturriaga, D., Roldán-Varona, P., Rodríguez-Cobo, L. & López-Higuera, J. M. Optical fibre sensors by direct laser processing: A review. Sensors 20, 6971 (2020). https://doi.org/10.3390/s20236971
  6. Kumar, A., Pankaj, V. & Poonam, J. Refractive index sensor for sensing high refractive index bioliquids at the THz frequency. Opt. Soc. Am. B 38, F81–F89 (2021). https://doi.org/10.1364/JOSAB.438367
  7. Pérez, M. A., González, O. & Arias, J. R., Optical Fibre Sensors for Chemical and Biological Measurements. in Current Developments in Optical Fibre Technology (eds. Harun, S. W. & Arof, H.) (IntechOpen, 2013). https://doi.org/10.5772/52741
  8. Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634–644 (2016). https://doi.org/1039/C5LC01445J
  9. Leal-Junior, A. G. et al. Polymer optical fibre sensors in healthcare applications: A comprehensive review. Sensors 19, 3156 (2019). https://doi.org/10.3390/s19143156
  10. Yan, X., Li, H. & Su, X. Review of optical sensors for pesticides. Trends Analyt. Chem. 103, 1–20 (2018). https://doi.org/10.1016/j.trac.2018.03.004
  11. Joe, H. E., Yun, H., Jo, S.-H., Jun, M. G. & Min, B.-K. A review on optical fibre sensors for environmental monitoring. Int. J. Pr. Eng. Man-Gt. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  12. Costa, G. K. B. et al. In-fibre Fabry-Perot interferometer for strain and magnetic field sensing. Express 24, 14690–14696 (2016). https://doi.org/10.1364/OE.24.014690
  13. Zhou, N. et al. MEMS-based reflective intensity-modulated fibre-optic sensor for pressure measurements. Sensors 15, 2233 (2020). https://doi.org/3390/s20082233
  14. Pevec, S. & Donlagic, D. Multiparameter fibre-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature. IEEE Photon. J. 9, 1–14 (2017). https://doi.org/10.1109/JPHOT.2017.2651978
  15. Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluoro-butyl acrylate-coated tapered optical fibres. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  16. Pura, P. et al. Polymer microtips at different types of optical fibres as functional elements for sensing applications. Light. Technol. 3, 2398–2404 (2015). https://doi.org/10.1109/JLT.2014.2385961
  17. Marć, P., Żuchowska, M. & Jaroszewicz, L. Reflective properties of a polymer micro-transducer for an optical fibre refractive index sensor. Sensors 20, 6964 (2020). https://doi.org/10.3390/s20236964
  18. Marć, P., Żuchowska, M., Jakubowska, I. & Jaroszewicz, L. R. Polymer microtip on a multimode optical fibre as a threshold volatile organic compounds sensor. Sensors 22, 1246 (2022). https://doi.org/10.3390/s22031246
  19. Tian, Z., Yam, S. S. H. & Loock, H. P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fibre. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
  20. Ran, Z., Rao, Z., Zhang, J., Liu, Z. & Xu, B. A Miniature fibre-optic refractive-index sensor based on laser-machined fabry–perot interferometer tip. Light. Technol. 27, 5426–5429 (2009). https://doi.org/10.1109/JLT.2009.2031656
  21. Wei, T., Han, Y., Li, Y., Tsai, H. L. &. Xiao, H. Temperature-insensitive miniaturized fibre inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Express 16, 5764–5769 (2008). https://doi.org/10.1364/OE.16.005764
  22. Enokihara, A., Izutsu, M. & Sueta, T. Optical fibre sensors using the method of polarization-rotated reflection. Light. Technol. 5, 1584–1590 (1987). https://doi.org/10.1109/JLT.1987.1075449
  23. Zheng, Y., Li, J., Liu, Y., Li, Y. & Qu, S. Dual-parameter demodu-lated torsion sensor based on the Lyot filter with a twisted polarization-maintaining fibre. Express 30, 2288–2298, (2022). https://doi.org/10.1364/OE.448088
  24. Jin, W. et al. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibres. Photonic Sens. 11, 141–157 (2021). https://doi.org/10.1007/s13320-021-0627-4
  25. Xie, H. M., Dabkiewicz, Ph., Ulrich, R. & Okamoto, K. Side-hole fibre for fibre-optic pressure sensing. Lett. 11, 333–335 (1986). https://doi.org/10.1364/OL.11.000333
  26. Bao, L., Dong, X., Shum, P. P. & Shen, C. High sensitivity liquid level sensor based on a hollow core fibre structure. Commun. 499, 127279 (2019). https://doi.org/10.1016/j.optcom.2021.127279
  27. Lin, H., Liu, F., Guo, H., Zhou A. & Dai, Y. Ultra-highly sensitive gas pressure sensor based on dual side-hole fibre interferometers with Vernier effect. Express 26, 28763–28772 (2018). https://doi.org/10.1364/OE.26.028763
  28. Taflove, A. & Hagness, S. C. Computational Electrodynamics – The Finite-Difference Time-Domain Method – 3rd Edition. (Artech House, 2005). https://us.artechhouse.com/Computational-Electrodynamics-Third-Edition-P1929.aspx
  29. Bird, T. S. Definition and misuse of return loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas Propag. Mag. 51, 166–167 (2009). https://doi.org/10.1109/MAP.2009.5162049
Go to article

Authors and Affiliations

Michał Dudek
1
ORCID: ORCID
Kinga.K. Köllő
1

  1. Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the noise levels present at various points in the FOSREM type fiber optic seismograph. The main aim of this research was to discover magnitudes of noise, introduced by various components of the analog and optical circuits of the device. First, the noise present in the electronic circuit without any optics connected is measured. Further experiments show noise levels including the detector diode not illuminated and illuminated. Additional tests were carried out to prove the necessity of analog circuitry shielding. All measurements were repeated using three powering scenarios which investigated the influence of power supply selection on noise. The results show that the electronic components provide a sufficient margin for the use of an even more precise detector diode. The total noise density of the whole device is lower than 4⋅10−7 rad/(s√Hz). The use of a dedicated Insulating Power Converter as a power supply shows possible advantages, but further experiments should be conducted to provide explicit thermic confirmation of these gains.
Go to article

Bibliography

  1. Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications. (CRC press, 2017).
  2. Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B. & Kamaruddin, R. Toward optical sensors: Review and applications. J. Phys.: Conf. Ser. 423, 012064 (2014). https://doi.org/10.1088/1742-6596/423/1/012064
  3. Lee, B. et al. Interferometric fiber optic sensors. Sensors 12(3), 2467-2486 (2012). https://doi.org/10.3390/s120302467
  4. Bao, X. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12(7), 8601–8639 (2012). https://doi.org/10.3390/s120708601
  5. Liu, G., Han, M. & Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 23(6), 7237–7247 (2015). https://doi.org/10.1364/OE.23.007237
  6. Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A. & Passaro, V. Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18(9), 3115 (2018). https://doi.org/10.3390/s18093115
  7. Ramakrishnan, M., Rajan, G., Semenova, Y. & Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1), 99 (2016), https://doi.org/10.3390/s16010099.
  8. Yu, Q. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 1(1), 72–83 (2011). https://doi.org/10.1007/s13320-010-0017-9
  9. Chang, T. et al. Fiber optic interferometric seismometer with phase feedback control. Opt. Express 28(5), 6102–6122 (2020). https://doi.org/10.1364/OE.385703
  10. Budinski, V. & Donlagic, D. Fiber-optic sensors for measurements of torsion, twist and rotation: a review. Sensors 17(3), 443 (2017). https://doi.org/10.3390/s17030443
  11. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Kowalski, J. K., Kowalski, H. A. & Teisseyre, K. P. Innovative Fibre-Optic Rotational Seismograph. in 7th International Symposium on Sensor Science Proceedings 15, 45 (2019). https://doi.org/10.3390/proceedings2019015045
  12. Lee, W. H. K., Celebi, M., Todorovska, M. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945–957 (2009). https://doi.org/10.1785/0120080344
  13. Kurzych, A., Kowalski, J. K., Sakowicz, B., Krajewski, Z. & Jaroszewicz, L. R. The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring. Opto-Electron. Rev. 24(3), 134–143 (2016). http://doi.org/10.1515/oere-2016-0017
  14. Kurzych, A., Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev. 28(2), 69–73 (2020). https://doi.org/10.24425/opelre.2020.132503
  15. Bernauer, F. et al. Rotation, strain, and translation sensors performance tests with active seismic sources. Sensors 21(1), 264 (2021). https://doi.org/10.3390/s21010264
  16. Sagnac, G. The light ether demonstrated by the effect of the relativewind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708–710 (1913).
  17. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475
  18. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Dudek, M., Kowalski, J. K. & Teisseyre, K. P. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19(12), 2699 (2019). https://doi.org/10.3390/s19122699
  19. Lefevre, H. C., Martin, P., Morisse, J., Simonpietri, P., Vivenot, P. & Arditti, H. J. High-dynamic-range fiber gyro with all-digital signal processing. Proc. SPIE 1367, 72–80 (1991).
  20. LeFevre, H. C. The Fiber Optic Gyroscope. (2nd ed.) 154–196 (Artech House: Norwood, MA, 2008).
  21. Merlo, S., Norgia, M. & Donati, S. Fiber Gyroscope Principles. in Handbook of Fibre Optic Sensing Technology. (ed. Lopez, J. M.) 1–23 (2000).
  22. Bernauer, F., Wassermann, J. & Igel, H. Rotational sensors—A comparison of different sensor types. J. Seismol. 16, 595–602 (2012). https://doi.org/10.1007/s10950-012-9286-7
  23. Heinzel, G., Rüdiger, A. & Schilling, R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. https://holometer.fnal.gov/GH_FFT.pdf (2021).
  24. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  25. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc., Eindhoven, Niderlands, (2015).
  26. Konno K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998).
Go to article

Authors and Affiliations

Sławomir Niespodziany
1
ORCID: ORCID
Anna T. Kurzych
2
ORCID: ORCID
Michał Dudek
2
ORCID: ORCID

  1. Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., Warsaw 00-665, Poland
  2. Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
Download PDF Download RIS Download Bibtex

Abstract

Preliminary results of laboratory and field tests of fibre optic rotational seismographs designed for rotational seismology are presented. In order to meet new directions of the research in this field, there is clearly a great need for suitable and extremely sensitive wideband sensors. The presented rotational seismographs based on the fibre optic gyroscopes show significant advantages over other sensor technologies when used in the seismological applications. Although the presented results are prepared for systems designed to record strong events expected by the so-called “engineering seismology”, the described system modification shows that it is possible to construct a device suitable for weak events monitoring expected by basic seismological research. The presented sensors are characterized, first and foremost, by a wide measuring range. They detect signals with amplitudes ranging from several dozen nrad/s up to even few rad/s and frequencies from 0.01 Hz to 100 Hz. The performed Allan variance analysis indicates the sensors main parameters: angle random walk in the range of 3 ∙ 10 −8 - 2 ∙ 10 −7 rad/s and bias instability in the range of 2 ∙ 10 −9 - 2 ∙ 10 −8 rad/s depending on the device. The results concerning the registration of rotational seismic events by the systems located in Książ Castle, Poland, as well as in the coalmine “Ignacy” in Rybnik, Poland were also presented and analysed.
Go to article

Bibliography

  1. Guéguen, P. & Astorga, A. The Torsional Response of Civil Engineering Structures during Earthguake from a Observational Point of View. Sensors 21, 342 (2021). https://doi.org/10.3390/s21020342
  2. Zembaty, Z., Bernauer, F., Igel, H. & Schreiber, K. U. Rotation Rate Sensors and Their Sensors 21, 5344 (2021). https://doi.org/10.3390/s21165344
  3. Guéguen, P., Guattari, F., Aubert, C. & LAudat. Comparing Direct Observation of Torsion with Array-Derived Rotation in Civil Engineering Structures. Sensors 21, 142 (2021). https://doi.org/10.3390/s21020142
  4. Rossi, Y. et al. Kalman Filter-Based Fusion of Collocated Acceleration, GNSS and Rotation Data for 6C Motion Sensors 21, 1543 (2021). https://doi.org/10.3390/s21041543
  5. Fuławka, K., Pytel, W. & Pałac-Walko, B. Near-Field measurement of six degrees of freedom mining-induced termios in lower siliesian coper basin. Sensors 20, 6801 (2020). https://doi.org/10.3390/s21020142
  6. Lee, W. H. K. Seismology, Rotation. in Encyclopedia of Solid Earth Geophysics; (eds. Gupta, H. ) 1–12 (Springer, Dordrecht, The Netherlands, 2019).
  7. Chin-Jen, L., Chun-Chi, L. & Lee, W.H.K. Recording Rotational and Translational Ground Motions of Two TAIGER Explosions in Northeastern Taiwan on 4 March. Bull. Seismol. Soc. Am 99(2B), 1237– 1250 (2008). https://doi.org/10.1785/0120080176
  8. Trifunac, M. D. Rotations in Structural Response. Bull. Seismol. Soc. Am 99(2B), 968–979 (2009). https://doi.org/10.1785/01200800068
  9. Grzebyk, W., Mertuszka, P. & Stolecki, L. Characteristics of the vibratory motion of a transaction and rotating character coming from mine seismic quakes. Wiadomości Górnicze 66(2), 97–103 (2015). [in Polish]
  10. Kurzych, A. T, Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fibre optic gyroscope, Opto- Electron. Rev. 28(2), 69- 73 (2020). https://doi.org/10.24425/opelre.2020.132503
  11. Zembaty, Z., Mutke, G., Nawrocki, D. & Bobra, P. Rotational Ground-Motion Records from Induced Seismic Events, Res. Let. 88(1), 13-22 (2017). https://doi.org/10.1785/0220160131
  12. Kaláb, Z., Knejzlík, J. & Lednická, M. Observation of rotational component in digital data of mining induced seismic events. Górnictwo i Geologia 7(1), 75–85 (2012).
  13. Ju, L., Blair, D. G. & Zhao, C. Detection of gravitational waves. Rep. Prog. Phys. 63, 1317–1427 (2000). https://doi.org/10.1088/0034-4885/63/9/201
  14. Teisseyre R. Why rotational seismology: confrontation between classic and asymmetric Bull. Seismol. Soc. Am. 101(4), 1683-1691 (2011). https://doi.org/10.1785/0120100078
  15. Abreu, R., Kamm, J. & Reiß, A-S. Micropolar modelling of rotational waves in Geophys. J. Int. 210, 1021-1046 (2017). https://doi.org/10.1093/gji/ggx211
  16. Hart, G. C., DiJulio, R. M. & Lew, M. Torsional response of high rise buildings ASCE, Journal of Structure Division 101(2), 397–415 (1975). https://doi.org/10.1061/JSDEAG.0003999
  17. Suryanto, W. Rotational Motions in Seismology, Theory and Application. (LMU München: Faculty of Geosciences, 2006). https://edoc.ub.uni-muenchen.de/7850/1/Suryanto_Wiwit.pdf
  18. Zerva, A. & Zhang, O. Corellation patterns in characteristic of spatially variable seismic ground motions. Earthquake Engineering & Structural Dynamics 26, 19–39 (1997).https://doi.org/10.1002/(SICI)1096-9845(199701)26:1%3C19::AID-EQE620%3E3.0.CO;2-F
  19. Jaroszewicz, L.R. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161, (2016). https://doi.org/10.3390/s16122161
  20. Sagnac, G. The light ether demonstrated by the effect of the relative wind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708-710 (1913).
  21. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475-496 (1967). https://doi.org/10.1103/RevModPhys.39.475
  22. Lefevre, H. C., Martin, P. et al. High-dynamic-range fibre gyro with all-digital signal Proc. of SPIE 1367, 72-80 (1991). https://doi.org/10.1117/12.24730
  23. Niespodziany, S., Kurzych, A.T. & Dudek M. Detector diode circuit noise measurement and power supply method selection for the fibre optic seismograph, Opto-Electron. Rev. 29(2), 71-79 (2021). https://doi.org/10.24425/opelre.2021.135830
  24. Kurzych, A. T. et al. Measurements of rotational events generated by artificial explosions and external excita-tions using the optical fibre sensors network, Sensors 20(21), 6107 (2020). https://doi.org/10.3390/s20216107
  25. Bernauer, et al. Rotation, Strain and Translation Sensors Performance Tests with Active Seismic Sources. Sensors 21, 264 (2021). https://doi.org/10.3390/s21010264
  26. Kurzych, A. T., Jaroszewicz, L. R., Dudek, M., Sakowicz, B. & Kowalski, J. K. Towards uniformity of rotational events recording – initial data from common test engaging more than 40 sensors including a wide number of fibre-optic rotational seismometers. Opto-Electron. Rev. 29(1), 39-44 (2021). https://doi.org/10.24425/opelre.2021.135827
  27. Konno, K. & Ohmachi, T. Ground Motion characteristics estimated from spectral ratio between horizonatal and vertical components of microtermor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998). https://doi.org/10.1785/BSSA0880010228
  28. Murray-Bergquist, L., Bernauer, F. & Igel, H. Characterization of Six-Degree-of-Freedom Sensors for Building Health Sensors 21, 3732 (2021). https://doi.org/10.3390/s21113732
  29. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fibre Optic Gyros. IEEE-SA Standards Boards 952 (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  30. Allan Variance: Noise Analysis for Gyroscopes. Applications Note AN5087 Rev.0.2/2015. Freescale Semisconductor Inc. (2015). https://telesens.co/wp- content/uploads/2017/05/AllanVariance5087-1.pdf
  31. Di Virgilio, A. D. et al. Sensitivity limit investigation of a Sagnac gyroscope through linear regression analysis. Eur. Phys. J. C 81, 400 (2021). https://doi.org/10.1140/epjc/s10052-021-09199-1
Go to article

Authors and Affiliations

Leszek R. Jaroszewicz
1
ORCID: ORCID
Michał Dudek
1
ORCID: ORCID
Anna T. Kurzych
1
ORCID: ORCID
Krzysztof P. Teisseyre
2
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warszawa, 00-908, Poland
  2. Institute of Geophysics, Polish Academy of Sciences, 64 Ks. Janusza St., Warszawa, 01-452, Poland
Download PDF Download RIS Download Bibtex

Abstract

Rotational seismology is one of the fastest developing fields of science nowadays with strongly recognized significance. Capability of monitoring rotational ground motions represents a crucial aspect of improving civil safety and efficiency of seismological data gathering. The correct sensing network selection is very important for reliable data acquisition. This paper presents initial data obtained during the international research study which has involved more than 40 various rotational sensors collected in one place. The key novelty of this experiment was the possibility to compare data gathered by completely different rotational sensors during artificially generated ground vibrations. Authors collected data by four interferometric optical fiber sensors, Fiber-Optic System for Rotational Events & Phenomena Monitoring (FOSREM), which are mobile rotational seismographs with a wide measuring range from 10-7 rad/s up to even few rad/s, sensitive only to the rotational component of the ground movement. Presented experimental results show that FOSREMs are competitive in rotational events recording compared with the state-of-the-art rotational sensors but their operation still should be improved.
Go to article

Bibliography

  1. Huang, B. S. Ground rotational motions of the 1991 Chi-Chi, Taiwan, earthquake asinferred from dense array observations. Geophys. Res. Lett. 30, 1307–1310 (2003). https://doi.org/10.1029/2002GL015157
  2. Igel, H. et al. Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003. Geophys. Res. Lett. 32, (2005). https://doi.org/10.1029/2004GL022336
  3. Takeo, M. Ground Rotational Motions Recorded in Near-Source Region of Earthquakes. in Earthquake Source Asymmetry, Structural Media and Rotation Effects (eds. Teisseyre, R., Takeo, M., Majewski, E.) 157–167 (Springer-Verlag Berlin Heidelberg, 2006).
  4. Trifunac, M. D. A note on rotational components of earthquake motions on ground surface for incident body waves. Int. J. Soil Dyn. Earthq. Eng. 1, 11–19 (1982). https://doi.org/10.1016/0261- 7277(82)90009-2
  5. Trifunac, M D. Effects of Torsional and Rocking Excitations on the Response of Structures. in Earthquake Source Asymmetry, Structural Media and Rotation Effects (eds. Teisseyre, R., Takeo, M., Majewski, E.) 569–582 (Springer-Verlag Berlin Heidelberg, 2006).
  6. Guéguen, P. & Astorga, A. The Torsional Response of Civil Engineering Structures during Earthquake from an Observational Point of View. Sensors 21, 342 (2021). https://doi.org/10.3390/s21020342.
  7. Kurzych, A. T. et al. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev., 28(2), 69-73 (2020). https://doi.org/10.24425/opelre.2020.132503
  8. Jaroszewicz, L. R. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161 (2016). https://doi.org/10.3390/s16122161
  9. Igel, H. et al. ROMY: a multicomponent ring laser for geodesy and geophysics. Geophys. J. Int. 225, 684-698 (2021). https://doi.org/10.1093/gji/ggaa614
  10. Yuan, S. et al. Seismic source tracking with six degree-of-freedom ground motion observations. J. Geophys. Res. Solid Earth 126, e2020JB021112 (2021). https://doi.org/10.1029/2020JB021112
  11. Brokesova, J. & Malek, J. Comparative measurements of local seismic rotations by three independent methods. Sensors 20, 5679 (2020). https://doi.org/10.3390/s2019679
  12. Kurzych, A. T. et al. Two correlated interferometric optical fiber systems applied to the mining activity recordings. J. Lightwave Technol. 37, 4851–4857 (2019). https://doi.org/10.1109/JLT.2019.2923853
  13. Adams, R. D. & Engdahl, E. R. International Association of Seismology and Physics of the Earth’s Interior. in International Geophysics (eds. Lee, W. H. K., Kanamori, H., Jennings, P. C., Kisslinger, C.) 15411549 (Academic Press, 2003).
  14. Bernauer, F. et al. Rotation, strain and translation sensors performance tests with active seismic sources. Sensors 21, 264 (2021). https://doi.org/10.3390/s21010264
  15. Brokesova, J. et al. Rotaphone-CY: The new rotaphone model design and preminary results from performance tests with active seismic sources. Senosrs 21, 562 (2021). https://doi.org/10.3390/s21020562
  16. Kurzych, A. T. et al. Measurements of rotational events generated by artificial explosions and external excitations using the optical fiber sensors network. Sensors 20, 6107 (2020). https://doi.org/10.3390/s20216107
  17. Bernauer F. et al. BlueSeis3A: full characterizationof a 3C broadband rotational seismometer. Seismol. Res. Lett. 89, 620-629 (2018). https://doi.org/10.1785/0220170143
  18. Yuan, S. et al. Six degree-of freedom broadband ground-motion observations with portable sensors: validation, local earthquakes, and signal processing. Bull. Seismol. Soc. Am. 110, 953-965 (2020). https://doi.org/10.1785/0120190277v
  19. Bernauer, F., Wassermann, J. & Igel H. Dynamic tilt correction using direct rotational motion measurements. Seismol. Res. Lett. 20, 1–9 (2020). https://doi.org/10.1785/0220200132
  20. Jaroszewicz, L. R. et al. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19, 2699 (2019). https://doi.org/10.3390/s19122699
  21. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  22. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc. (Eindhoven, Niderlands, 2015).
  23. Konno, K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88, 228-241 (1998).
Go to article

Authors and Affiliations

Anna T. Kurzych
1
ORCID: ORCID
Leszek R. Jaroszewicz
1
ORCID: ORCID
Michał Dudek
1
ORCID: ORCID
Bartosz Sakowicz
2
ORCID: ORCID
Jerzy K. Kowalski
3
ORCID: ORCID

  1. Institute of Technical Physics, Military University of Technology., 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
  2. Dep. of Microelectronics and Computer Science, Lodz University of Technology, 221/223 Wólczańska St., Lodz 90-924, Poland
  3. Elproma Elektronika Ltd., 13 Szymanowskiego St., Łomianki 05-092, Poland

This page uses 'cookies'. Learn more