Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Data
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recently, significant progress has been made in experimental studies on the flow of wet steam, measuring techniques based on recording the phenomenon of extinction of light and ultrasound have been elaborated or improved. The basic value experimentally determined in the final stage was the content of the liquid phase defined as the wetness fraction. The methodology of tests and experimental investigations was presented, as well as the applied and developed measurement systems. Next, some developed designs of new ultrasonic and light extinction measuring probe and their modifications are described. The article presents also some examples of applications of the developed measurement techniques in application to experimental research conducted on wet steam. Examples of comparison between experimental and numerical tests for the extinction method are also provided.

Go to article

Authors and Affiliations

Mirosław Majkut
Sławomir Dykas
Krystian Smołka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents studies of mathematical modelling in transonic flow through the first stage rotor of the axial compressor of homogenous and heterogeneous condensation. The condensation phenomena implemented into a commercial software is based on the classical theory of nucleation and molecular-kinetic droplet growth model. Model is validated against experimental studies available in the literature regarding the flow through the first stage of turbine compressor, i.e. the rotor37 transonic compressor benchmark test. The impact of air humidity and air contamination on the condensation process for different flow conditions is examined. The influence of latent heat release due to condensation exerts a significant impact on the flow structure, thus the analysis of the air humidity and contamination influence on the condensation is presented. The results presented indicate the non-negligible influence of air humidity on the flow structure in the transonic flow regime, thus it is recommended to take condensation phenomenon under consideration in high-velocity airflow simulations.

Go to article

Authors and Affiliations

Piotr Paweł Wiśniewski
Sławomir Dykas
Guojie Zhang
Download PDF Download RIS Download Bibtex

Abstract

The paper is concerned with an important issue from the field of thermoacoustics - the numerical modelling of the flow field in the thermoacoustic engine. The presented way of modelling is based on the solution to fundamental fluid mechanics equations that govern the flow of compressible, viscous, and heat-transferring gas. The paper presents the way of modelling the thermoacoustic engine, the way of conducting calculations and the results which illustrate the correctness of the selected computational technique.
Go to article

Authors and Affiliations

Sebastian Rulik
Leszek Remiorz
Sławomir Dykas
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a description of selected models dedicated to steam condensing flow modelling. The models are implemented into an in-house computational fluid dynamics code that has been successfully applied to wet steam flow calculation for many years now. All models use the same condensation model that has been validated against the majority of available experimental data. The state equations for vapour and liquid water, the physical model as well as the numerical techniques of solution to flow governing equations have been presented. For the single-fluid model, the Reynolds-averaged Navier-Stokes equations for vapour/liquid mixture are solved, whereas the two-fluid model solves separate flow governing equations for the compressible, viscous and turbulent vapour phase and for the compressible and inviscid liquid phase. All described models have been compared with relation to the flow through the Laval nozzle.
Go to article

Authors and Affiliations

Włodzimierz Wróblewski
Tadeusz Chmielniak
Sławomir Dykas
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of numerical modelling of a rectangular tube filled with a mixture of air and CO2 by means of the induced standing wave. Assumed frequency inducing the acoustic waves corresponds to the frequency of the thermoacoustic engine. In order to reduce the computational time the engine has been replaced by the mechanical system consisting of a piston. This paper includes the results of model studies of an acoustic tube filled with a mixture of air and CO2 in which a standing wave was induced.

Go to article

Authors and Affiliations

Sebastian Rulik
Leszek Remiorz
Sławomir Dykas
Keywords Fan CFD Cyclorotor
Download PDF Download RIS Download Bibtex

Bibliography

[1] Morandini M., Xisto C., Pascoa J., Quaranta G., Gagnon L., Masarati P.: Aeroelastic analysis of a cycloidal rotor under various operating conditions. J. Aircraft. 55(2018), 4, 1675–1688.
[2] Muscarello V., Masarati P., Quaranta G., Georges T., Gomand J., Malburet F., Marilena P.: Instability mechanism of roll/lateral biodynamic rotorcraft–pilot couplings. J. Am. Helicopter Soc. 63(2018), 1–13.
[3] Xisto C. Leger J., Pascoa J., Gagnon L., Masarati P., Angeli D., Dumas A.: Parametric analysis of a large-scale cycloidal rotor in hovering conditions. J. Aerospace Eng. 30(2017), 1.
[4] Xisto C., Pascoa J., Abdollahzadeh M., Leger J., Masarati P., Gagnon L., Schwaiger M., Wills D.: PECyT – plasma enhanced cycloidal thruster. In: Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. July 28–30, 2014, Cleveland.
[5] Andrisani A., Angeli D., Dumas A.: Optimal pitching schedules for a cycloidal rotor in hovering. Aircr. Eng. Aerosp. Tec. 88(2016), 5.
[6] Xisto C., Pascoa J., Leger J.: Cycloidal rotor propulsion system with plasma enhanced aerodynamics. In: Proc. ASME 2014 Int.l Mechanical Engineering Congress and Exposition; Montreal, Nov. 14–20, 2014; V001T01A005.
[7] Xisto C., Pascoa J., Trancossi M.: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high solidity VAWT. J. Sol. Energy Eng. 138(2016), 031006.
[8] Benedict M.: Fundamental understanding of cycloidal-rotor concept for micro air vehicle applications. PhD thesis, Univ. Maryland, College Park, 2010.
[9] Benedict M., Ramasamy M., Chopra I.: Improving the aerodynamic performance of micro-air-vehicle-scale cycloidal rotor: An experimental approach. J. Aircraft 47(20104), 1117–1125.
[10] Heimerl J., Halder A., Benedict M.: Experimental and computational investigation of a UAV-scale cycloidal rotor in forward flight. In: Proc. The Vertical Flight Society’s 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10–14, 2021.
[11] Halder A., Benedict M.: Nonlinear aeroelastic coupled trim analysis of a twin cyclocopter in forward flight. AIAA J., 59, 2021, 305–319.
[12] Lee B., Saj V., Benedict M., Kalathil D.: A Vision-Based Control Method for Autonomous Landing Of Vertical Flight Aircraft On A Moving Platform Without Using GPS. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[13] Denton H., Benedict M., Kang H., Hrishikeshavan V.: Design, development and flight testing of a gun-launched rotary-wing micro air vehicle. In: Proc. The Vertical Flight Society’s, 76th Ann. Forum and Technology Display, Virtual, Oct. 5–8, 2020.
[14] Halder A., Benedict M.: Understanding upward scalability of cycloidal rotors for large-scale UAS applications. In: Proc. Aeromechanics for Advanced Vertical Flight Technical Meeting 2020, Transformative Vertical Flight 2020, San Jose, 21–23 Jan. 2020, 311–330.
[15] Runco C., Benedict M.: Flight dynamics model identification of a meso-scale twin-cyclocopter in hover. Paper presented at the 77th Ann. Vertical Flight Society Forum and Technology Display, The Future of Vertical Flight, Virtual, May 10-14, 2021.
[16] Runco C., Coleman D., Benedict M.: Design and development of a 30 g cyclocopter. J. Am. Helicopter Soc. 64(2019), 1.
[17] Coleman D., Halder A., Saemi F., Runco C., Denton H., Lee B., Benedict M.: Development of “Aria”, a compact, ultra-quiet personal electric helicopter. In: Proc. 77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight, Virtual, May 10–14, 2021.
[18] Koschorrek P., Siebert Ch., Haghani A., Jeinsch T.: Dynamic positioning with active roll reduction using Voith Schneider propeller. IFAC-PapersOnLine, 48(2015), 16, 178–183.
[19] Schubert A., Koschorrek P., Kurowski M., Lampe B., Jeinsch T.: Roll damping using Voith Schneider propeller a repetitive control approach. IFACPapersOnLine 49(2016), 23, 557–561.
[20] Hahn T., Koschorrek P., Jeinsch T.: Parameter estimation of wave-induced oscillatory ship motion for wave filtering in dynamic positioning. IFAC-PapersOnLine 51(2018), 29, 183–188.
[21] Hashem I., Mohamed M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142(2018), 531–545
[22] Siegel S.: Numerical benchmarking study of a cycloidal wave energy converter. Renew. Energ. 134(2019), 390–405.
[23] Siegel S.: Wave radiation of a cycloidal wave energy converter. Appl. Ocean Res. 49(2015), 9–19.
[24] Bianchini A., Balduzzi F., Rainbird J., Peiro J., Graham M., Ferrara G.: An experimental and numerical assessment of airfoil polars for use in Darrieus wind turbines – Part I: Flow curvature effects. J. Eng. Gas Turb. Power 138(2016), 032602-1.
[25] Dykas S., Majkut M., Smołka K., Strozik M., Chmielniak T., Stasko T.: Numerical and experimental investigation of the fan with cycloidal rotor. Mech. Mechanical Eng. 22(2018), 2, 447–454.
[26] Stasko T., Dykas S., Majkut M., Smołka K.: An attempt to evaluate the cycloidal rotor fan performance, Open J. Fluid Dyn. 9(2019), 292–30.
[27] Shyy W., Lian Y., Tang J., Viieru D., Liu H.: Aerodynamics of Low Reynolds Flyers. Cambridge Univ. Press, 2008.
[28] Ansys Fluent User Guide 2020 R1. Ansys, Canonsburg 2020.
[29] Shrestha E., Yeo D., Benedict M., Chopra I.: Development of a meso-scale cycloidal-rotor aircraft for micro air vehicle application. Int. J. Micro Air Veh. 9(2017), 3.
[30] Augusto J., Monteiro L., Pascoa J., Xisto C.: Aerodynamic optimization of cyclorotors. Aircraft Eng. Aerosp. Tec. 88(2016), 2.
Go to article

Authors and Affiliations

Tomasz Staśko
1
Mirosław Majkut
1
Sławomir Dykas
1
Krystian Smołka
1

  1. Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a thermal-economic analysis of a 900 MW coal-fired power unit for ultra-supercritical parameters with internal steam reheat. The subject of the study was the cycle proposed as the "initial thermal cycle structure" during the completion of the project "Advanced Technologies for Energy Generation" with the steam parameters of 650/670 °C/30 MPa. Two configurations of internal reheat were analysed: with a four- and seven-section exchanger. The effect of reheat on the operation of the power unit under a partial load was also analysed, and preliminary calculations of the heat exchange area of the internal reheat were made.
Go to article

Authors and Affiliations

Sebastian Rulik
Henryk Łukowicz
Sławomir Dykas
Katarzyna Stępczyńska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a thermal-economic analysis of different variants of a hard coal-fired 900 MW ultra-supercritical power unit. The aim of the study was to determine the effect of the parameters of live and reheated steam on the basic thermodynamic and economic indices of the thermal cycle. The subject of the study was the cycle configuration proposed as the "initial thermal cycle structure" during the completion of the project "Advanced Technologies for Energy Generation" with the live and reheated steam parameters of 650/670 °C. At the same time, a new concept of a thermal cycle for ultra-supercritical parameters with live and reheated steam temperature of 700/720 °C was suggested. The analysis of the ultra-supercritical unit concerned a variant with a single and double steam reheat. All solutions presented in the paper were subject to a detailed thermodynamic analysis, as well as an economic one which also included CO2emissions charges. The conducted economic analysis made it possible to determine the maximum value of investment expenditures at which given solutions are profitable.
Go to article

Authors and Affiliations

Sebastian Rulik
Henryk Łukowicz
Sławomir Dykas
Katarzyna Stępczyńska
Download PDF Download RIS Download Bibtex

Abstract

In this paper, numerical results of modeling of acoustic waves propagation are presented. For calculation of the acoustic fluctuations, a solution of the full non-linear Euler equation is used. The Euler equations are solved with the use of a numerical scheme of third-order accuracy in space and time. The paper shows a validation process of the described method. This method is suitable also for an aerodynamic noise assessment on the basis of unsteady mean flow field data obtained from a CFD calculations. In such case this method is called a hybrid CFD/CAA method. The proposed method is numerically decoupled with CFD solution, therefore the information about the mean unsteady flow field can be obtained using an arbitrary CFD method (solver). The accuracy of the acoustic field assessment depends on the quality of the CFD solutions. This decomposition reduces considerably the computational cost in comparison with direct noise calculations.

The presented Euler acoustic postprocessor (EAP) has been used for modeling of the acoustic waves propagation in a cavity and in the flow field around a cylinder and an aerodynamic profile.

Go to article

Authors and Affiliations

Włodzimierz Wróblewski
Tadeusz Chmielniak
Sebastian Rulik
Sławomir Dykas
Download PDF Download RIS Download Bibtex

Abstract

Besides centrifugal pumps, centrifugal fans are the most common turbomachines used in technical applications. They are commonly used in power engineering systems, such as heat engines and chillers, heating, ventilation, and air conditioning systems, supply and exhaust air systems. They are also used as machines consuming final energy (electricity). Therefore, any improvement in their efficiency affects the efficiency of energy generation and the level of electricity consumption. Many efforts have been made so far to find the most efficient numerical method of modelling flows in fans. However, only a few publications focus on the unsteadiness that may have an impact on device efficiency and noise generation. This paper presents an attempt to identify unsteadiness in the flow through a centrifugal fan by means of computational fluid dynamics and computational aeroacoustics methods. The works were performed using the Ansys CFX commercial software and the results of numerical studies are compared with experimental data.
Go to article

Bibliography

[1] Dykas S., Wróblewski W., Rulik S., Chmielniak T.: Numerical method for modelling of acoustic waves propagation. Arch. Acoust. 35(2010), 1, 35–48.
[2] Fortuna S., Sobczak K.: Numerical and experimental investigations of the flow in radial fan. Mechanics 27(2008), 4, 138–143
[3] Moon Y.J., Cho Y., Nam H.S.: Computation of unsteady viscous flow and aeroacoustic noise of the cross flow fan. Comput. Fluids 32(2003), 7, 995–1015.
[4] Rulik S., Dykas S., Wroblewski W.: Modelling of aerodynamic noise using hybrid SAS and DES methods. In: Proc. ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, June 14–18, 2010, 7(2010), 2835–2844., GT2010-2269.
[5] Stasko T., Dykas S., Majkut M., Smolka K.: An attempt to evaluate the cycloidal rotor fan performance. Open J. Fluid Dynam. 9(2019), 4.
[6] Benedek T., Vad J.: Beamforming based extension of semi-empirical noise modelling for low-speed axial flow fans. Appl. Acoust. 178(2021), 108018.
[7] Jiang H., Wang Q., Zheng T.F., Tu C.X., Zhang K.: PIV measurement of internal flow field in a range hood. In: Energy and Mechanical Engineering (S.Y. Liang, Ed.), 2015 Int. Conf. on Energy and Mechanical Engineering, Wuhan, 17-18 Oct. 2015, World Scientific, 2016, 570–575.
[8] Probst M., Pritz B.: Quantitative validation of CFD-simulation against PIV data for a centrifugal fan. In: Proc. 14th Int. Symp. on Experimental Computational Aerothermodynamics of Internal Flows, Gdansk 8-11 July 2019.
[9] Neise W., Michel U.: Aerodynamic Noise of Turbomachines. DLR-Interner Bericht, Berlin 1994.
[10] Jeon W.H., Lee D.J., Rhee H.: An application of the acoustic similarity law to the numerical analysis of centrifugal fan noise. JSME Int. J. C-mech Sy. 47(2004), 3, 845–851.
[11] Kissner C., Guerin S.: Comparison of predicted fan broadband noise using a twoversus a three-dimensional synthetic turbulence method. J. Sound Vib. 508(2021), 116221.
[12] Jaron R., Herthum H., Franke M., Moreau A., Guerin S.: Impact of turbulence models on RANS-informed prediction of fan broadband interaction noise. In: Proc. 12th Eur. Turbomachinery Conference (ETC), Stockholm, 3-7 April, 2017.
[13] Carolus T.: Theoretische und experimentelle Untersuchung des Pumpens von lufttechnischen Anlagen mit Radialventilatoren. PhD thesis, Karlsruhe University of Applied Sciences, Karlsruhe 1984.
[14] Blazquez-Navarro R., Corral R.: Prediction of fan acoustic blockage on fan/outlet guide vane broadband interaction noise using frequency domain linearized Navier–Stokes solvers. J. Sound Vib. 508(2021), 116033.
[15] Ffowcs-Williams J.E., Hawkings D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. T.R. Soc. Lond. S-A, 264(1969), 1151, 321–342.
[16] Lighthill M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lon. Ser.-A 211(1952) 1107, 564–587
[17] Menter F.R., Egorov Y.: A scale-adaptive simulation model using two-equation models. In: Proc. 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 10-13 Jan. 2005, AIAA 2005-1095.
[18] Ansys Fluent Theory Guide, 2021R1. https://www.ansys.com (acessed 1 July 12021).
Go to article

Authors and Affiliations

Balazs Pritz
1
Matthias Probst
1
Piotr Wiśniewski
2
Sławomir Dykas
2
Mirosław Majkut
2
Krystian Smołka
2

  1. Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology, Kaiserstraße 12 D-76131 Karlsruhe, Germany
  2. Department of Power Engineering and Turbomachinery, Silesian University of Technology, Poland

This page uses 'cookies'. Learn more