Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We wstępnej części artykułu przedstawiono stan obecnego rozpoznania geologicznego południowej części monokliny przedsudeckiej na tle waryscyjskich struktur tektonicznych środkowej Europy, z uwzględnieniem tematyki surowcowej. Z asadnicza część pracy zawiera analizę dotychczasowych materiałów geofizycznych, grawimetrycznych, magnetycznych i sejsmicznych pod kątem ustalenia i interpretacji związków korelacyjnych wyników badań, w tym między tektoniką obserwowaną na przekrojach sejsmiki płytkiej i głębokiej. Pokazano, że odpowiedni dobór zastosowanych metod stwarza szanse na efektywniejsze rozpoznanie budowy geologicznej podłoża podpermskiego obszaru. Z aproponowano pełniejsze wykorzystanie w interpretacji dynamicznych cech zapisu sejsmicznego na przytoczonym przykładzie wybranych sekcji sejsmicznych w wersji efektywnych współczynników odbicia (EWO ). W e wnioskach przedstawiono propozycję dalszych prac dla kompleksowej reinterpretacji materiałów geofizyczno-geologicznych, w celu rozpoznania utworów głębszego podłoża, z możliwością nawiązania do obszaru Niemiec.
Go to article

Authors and Affiliations

Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to identify thoroughly the geological structure of the Choszczno Anticline for potential CO2 storage. The paper presents the interpretation of seismic materials for a selected seismic profile reprocessed into a section of reflection coefficients characterized by increased recording resolution as compared to the wave image. Particular attention was paid to the geological complexes associated with the Jurassic reservoir formations suitable for carbon dioxide storage within the anticline. The correlation of the identified layers reflects the lithology and structure of the rock series. It allows determination of the thicknesses of the series and changes within them, and enables linking the individual layers with the lithologic units, based on geological data. The study refers to the whole Zechstein-Mesozoic succession of the Choszczno Anticline, with special emphasis on these series, in which there are potential reservoir formations for CO2 storage. The interpretation has significantly expanded the amount of data provided in standard seismic documentations. While assessing the suitability of the formations for CO2 storage, special attention should be paid to the tectonic disturbances within the Komorowo Formation, especially in the top part of the Choszczno structure. The Reed Sandstone bed is more continuous in this respect. The obtained results seem to suggest wider application of reprocessing of seismic materials into effective reflection coefficients to study the geological structure, also for other structures.

Go to article

Authors and Affiliations

Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the location, geological structure and characteristics of the Wyszogród and Dzierżanowo anticlines in terms of potential underground storage of carbon dioxide. The Dzierżanowo and Wyszogród anticlines are two of the nine pre-selected structures for underground storage of carbon dioxide in Mesozoic deposits of the Płock Trough. They were detected by seismic profiles and deep boreholes. The Dzierżanowo Anticline is explored in more detail (five boreholes) than the Wyszogród Anticline (one borehole). Lower Cretaceous and Lower Jurassic aquifers have been proposed for CO2 storage in these areas. They have similar parameters: average thickness (144 mand 161 m; 140 mand 112 m, respectively), depth to the aquifer (200-300 m, lower for the Dzierżanowo Anticline), high porosity and permeability of reservoir rocks (several hundred mD and more), high capacity storage of CO2 (much higher for the Wyszogród Anticline) and large thickness of the overburden seal. In both cases, the sealing series require further, detailed investigation of their sealing properties. No faults are observed within the reservoir rocks and overburden seal in the Wyszogród Anticline. They occur in the deeper parts of the Zechstein-Mesozoic succession up to the Lower Cretaceous in the Dzierżanowo Anticline. Due to its degree of exploration and the depth to the aquifer, and similar properties of the reservoir rocks and the sealing caprock, the Dzierżanowo structure seems more favourable for the underground storage of carbon dioxide. The Wyszogród and Dzierżanowo structures may be of interest to several large CO2 emitters in the region: Vettenfall Heat Poland SA - (Siekierki and Żerań, Warsaw) and the Dalkia Łódź ZEC SA, located at a distance of up to 100 kilometres.
Go to article

Authors and Affiliations

Sylwester Marek
Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The location, geological structure and characteristics of the Kamionki Anticline is presented in terms of possibility of underground CO2 storage. It is situated in the Płock Trough, in the SW part of the Płońsk Block, and represents a synsedimentary graben originated in the Early and Middle Jurassic. It has been explored by a semi-detailed reflection seismic survey and three deep boreholes (Kamionki 1, Kamionki 2 and Kamionki IG-3). Assuming that the anticline is conventionally outlined by a contour line of the top of the Lower Jurassic, its length is about 15 km, width is about 5 km and the area reaches approximately 75 km2. Geological, seismic and reservoir property data allow concluding that this structure is suitable for underground carbon dioxide storage. The primary reservoir level for underground CO2 storage is represented by Barremianmiddle Albian deposits of the Mogilno Formation with an average thickness of 170 metres, containing on the average 85% of sandstones, and showing porosity of about 20% and permeability above 100 mD up to 2000 mD. The sealing series is composed of Upper Cretaceous marls, limestones and chalk reaching the thickness of about 1000 metres. The secondary reservoir level is represented by upper Toarcian deposits of the Borucice Formation.

Go to article

Authors and Affiliations

Sylwester Marek
Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of an analysis of selected seismic profiles (reflection and refraction data) from the Radom-Lublin area aimed at obtaining a better understanding of geological structure and the identification of hydrocarbon deposits. To accurately reproduce the seismic reflection covering the sub-Permian formations, seismic cross sections were interpreted based on effective reflection coefficients (ERC). In interpreting the results, reference was made to the results of studies of the area using other geophysical methods.
The results of these studies made it possible to obtain new information on the geology and structure of the Paleozoic complex of the Radom-Lublin area and its relationships with the basement tectonics. The structural arrangement of Carboniferous and Devonian formations as well as older Silurian, Ordovician, and Cambrian series were recognized. Selected significant tectonic and lithological discontinuities and the nature and directions of their course were characterized. Special attention was given to regional tectonic zones: the Skrzynno Fault, the Ursynów-Kazimierz fault zone and the Kock zone. The use of ERC methodology made it possible to define the boundaries of lithostratigraphic units in Carboniferous, Devonian, and older formations. The obtained results can be used to assess hydrocarbon accumulation in the area under consideration.
Go to article

Authors and Affiliations

Lidia Dziewińska
1
ORCID: ORCID
Radosław Tarkowski
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Based on the reinterpretation of gravimetric, magnetic, seismic and magnetotelluric studies, new features of the sub-Permian basement in the area between the Dolsk Fault and the Middle Odra Fault, SW Poland, are identified. Among numerous faults and lineaments indicated in the article, those limiting both the Wolsztyn–Pogorzela High and a positive anomaly in the Lower Silesian Basin, as well as the faults in the vicinity of the Odra River are particularly prominent. N-S oriented structural elements are also visible in the gravity image. One of them separates the Pogorzela High from the Wolsztyn High. In light of the obtained results, according to refraction seismic surveys, the Polish equivalent to the Mid-German Crystalline Rise is located farther north from commonly accepted position within the Middle Odra Metamorphic Complex. The study results, supported by data from the neighboring area of Germany, may be important for further prospecting for sediment-hosted Cu and other metal deposits. The reprocessing of archival geophysical data using method of effective reflection coefficients (ERC) enabled the creation of more accurate structural model of ore series within the area of the Nowa Sól deposit in SW Poland. In terms of mineral resource prospects, this creates the possibility of applying new results from the study area to the similar zones in the corresponding part of Germany, which is the area between the phyllite zone and the Harz Mountains hosting very diverse and rich mineralization.

Go to article

Authors and Affiliations

Lidia Dziewińska
ORCID: ORCID
Radosław Tarkowski
ORCID: ORCID
Tomasz Bieńko
ORCID: ORCID

This page uses 'cookies'. Learn more