Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Neodymium-Iron-Boron (Nd-Fe-B) magnets are considered to have the highest energy density, and their applications include electric motors, generators, hard disc drives, and MRI. It is well known that a fiber structure with a high aspect ratio and the large specific surface area has the potential to overcome the limitations, such as inhomogeneous structures and the difficulty in alignment of easy axis, associated with such magnets obtained by conventional methods. In this work, a suitable heat-treatment procedure based on single-step and multistep treatments to synthesize sound electrospun Nd-Fe-B-O nanofibers of Φ572 nm was investigated. The single-step heat-treated (directly heat-treated at 800°C for 2 h in air) samples disintegrated along with the residual organic compounds, whereas the multistep heat-treated (sequential three-step heat-treated including three steps;: dehydration (250°C for 30 min in an inert atmosphere), debinding (650°C for 30 min in air), and calcination (800°C for 1 h in air)) fibers maintained sound fibrous morphology without any organic impurities. They could maintain such fibrous morphologies during the dehydration and debinding steps because of the relatively low internal pressures of water vapor and polymer, respectively. In addition, the NdFeO3 alloying phase was dominant in the multistep heat-treated fibers due to the removal of barriers to mass transfer in the interparticles.

Go to article

Authors and Affiliations

Eun Ju Jeon
Nu Si A. Eom
Jimin Lee
Bin Lee
Hye Mi Cho
Ji Sun On
Yong-Ho Choa
Bum Sung Kim
Download PDF Download RIS Download Bibtex

Abstract

The β-phase Titanium (β-Ti) alloys have been under the spotlight in the recent past for their use as biomedical prosthetic materials owing to their excellent properties such as low elastic modulus, high corrosion resistance and tensile strength. Recently, Niobium (Nb) has gained a lot of attention as a β-phase stabilizing element in Ti alloys to replace Vanadium (V) due to its excellent solubility in Ti, low elastic modulus and biocompatibility. In this work, low cost Ti-20Nb binary alloy has been fabricated via powder metallurgy procedures. The blended powder mixtures of Ti and Nb were sintered at 900°C for 20 mins by the Spark Plasma Sintering (SPS) with an applied uniaxial pressure of 40 MPa. The heating rate was fixed at 50°C/min. The sintered alloy was subject to heat treatments at 1200°C in vacuum condition for various time durations. The characterizations of microstructure obtained during this process were done using FE-SEM, EDS and XRD. By increasing heat treatment time, as understood, the volume of residual Nb particles was decreased resulting in accelerated diffusion of Nb into Ti. Micro hardness of the alloy increased from 340 to 355 HV with the increase in β phase content from 30 to 45%. The resultant alloys had relatively high densities and homogenized microstructures of dispersed lamellar β grains in α matrix.

Go to article

Authors and Affiliations

M.A. Haq
S.F. Abbas
Nu Si A. Eom
T.S. Kim
B. Lee
K.-T. Park
B.S. Kim
Download PDF Download RIS Download Bibtex

Abstract

In this study, we demonstrate a facile and cost-effective way to synthesize Nd-Fe-B of various shapes such as powders, rods and fibers using electrospinning, heat-treatment and washing procedures. Initially Nd-Fe-B fibers were fabricated using electrospinning. The as-spun Nd-Fe-B fibers had diameters ranging 489 to 630 nm depending on the PVP concentration in reaction solutions. The different morphologies of the Nd2Fe14B magnetic materials were related to the difference in thickness of the as-spun fibers. The relationships between the as-spun fiber thickness, the final morphology, and magnetic properties were briefly elucidated. The intrinsic coercivity of Nd2Fe14B changed with the change in morphology from powder (3908 Oe) to fiber (4622 Oe). This work demonstrates the effect of the Nd-Fe-B magnetic properties with morphology and can be extended to the experimental design of other magnetic materials.

Go to article

Authors and Affiliations

Nu Si A Eom
Muhammad Aneeq Haq
Jimin Lee
Kyoung-Mook Lim
Taek Soo Kim
Yong-Ho Choa
ORCID: ORCID
Bum Sung Kim

This page uses 'cookies'. Learn more