Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the main problems of multivariable cost functions in model predictive control is the choice of weighting factors. Two finite control set model predictive control algorithms, applied to the three-phase active rectifier with an LCL filter, are described in the paper. The investigated algorithms, i.e. PCicuc and PCigicuc, implement multivariable approaches applying line (grid) current, capacitor voltage and converter current. The main problem dealt with in the paper is the choice of optimum values of the cost function weighting factors. The values of the factors calculated using the method proposed in the paper are very close to the values represented by the lowest THDi of the line current. Moreover, simulations verifying the equations used in the prediction of controlled values, i.e. line current, capacitor voltage and converter current, are presented. Both simulation and experimental results are presented to verify effectiveness of the investigated control strategies under change of the load (P = 5 kW and 2.5 kW), during transient states, under unbalanced and balanced line voltage.

Go to article

Authors and Affiliations

P. Falkowski
A. Sikorski
K. Kulikowski
M. Korzeniewski
Download PDF Download RIS Download Bibtex

Abstract

Most of the basic control methods of the grid-connected converter (GCC) are defined to work with a sine wave grid voltage. In that case if the grid voltage is distorted by higher harmonics, the grid current may be distorted too, which, in consequence, may increase the value of the THD of the grid voltage. The paper deals with an improved finite control set model predictive control (FCS-MPC) method of an LCL-filtered GCC operating under distorted grid conditions. The proposed method utilizes supplementary grid current feedback to calculate the reference converter current. The introduced signal allows to effectively improve the operation when the grid is subject to harmonic distortion. The paper shows a simulation analysis of the proposed control scheme operating with and without additional feedback under grid distortions. To validate the practical feasibility of the proposed method an algorithm was implemented on a 32-bit microcontroller STM32F7 with a floating point unit to control a 10 kW GCC. The laboratory test setup provided experimental results showing properties of the introduced control scheme.

Go to article

Authors and Affiliations

P. Falkowski
A. Godlewska

This page uses 'cookies'. Learn more