Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The shipping noise near channels and ports is an important contribution to the ambient noise level, and the depth of these sites is often less than 100 m. However less attention has been paid to the measurement in shallow water environments (Brooker, Humphrey, 2016). This paper presents extensive measurements made on the URN (underwater radiated noise) of a small fishing boat in the South China Sea with 87 m depth. The URN data showed that the noise below 30 Hz was dominated by the background noise. The transmission loss (TL) was modelled with FEM (finite element method) and ray tracing according to the realistic environmental parameters in situ. The discrepancy between the modelled results and the results using simple law demonstrates both sea surface and bottom have significant effect on TL for the shallow water, especially at low frequencies. Inspired by the modelling methodology in AQUO (Achieve QUieter Oceans) project (Audoly et al., 2015), a predicted model applied to a typical fishing boat was built, which showed that the URN at frequencies below and above 100 Hz was dominated by non-cavitation propeller noise and mechanical noise, respectively. The agreement between predicted results and measured results also demonstrates that this modelling methodology is effective to some extent.
Go to article

Authors and Affiliations

Peng Zilong
Fan Jun
Wang Bin
Download PDF Download RIS Download Bibtex

Abstract

The impact of the noise radiated from merchant ships on marine life has become an active area of research. In this paper, a methodology integrating observation at a single location and modelling the whole noise field in shallow waters is presented. Specifically, underwater radiated noise data of opportunistic merchant ships in the waters of Zhoushan Archipelago were collected at least one day in each month from January 2015 to November 2016. The noise data were analyzed and a modified empirical spectral source level (SSL) model of merchant ships was proposed inspired by the RANDI-3 model (Research Ambient Noise Directionality) methodology. Then combining the modified model with the realistic geoacoustic parameters and AIS data of observed merchant ships, the noise mappings in this area were performed with N×2D of Normal Mode calculations, in which the SSL of each ship was estimated using the modified model. The sound propagation at different receiving positions is different due to the shielding effect of islands and bottom topography. The methodology proposed in this paper may provide a reference for modelling shipping noise in shallow waters with islands and reefs.
Go to article

Authors and Affiliations

Zilong Peng
1
Fulin Zhou
2
Jun Fan
2
Bin Wang
2
ORCID: ORCID
Huabing Wen
1

  1. Institute of Noise and Vibration, School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
  2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

In detecting cluster targets in ports or near-shore waters, the echo amplitude is seriously disturbed by interface reverberation, which leads to the distortion of the traditional target intensity characteristics, and the appearance of multiple targets in the same or adjacent beam leads to fuzzy feature recognition. Studying and extracting spatial distribution scale and motion features that reflect the information on cluster targets physics can improve the representation accuracy of cluster target characteristics. Based on the highlight model of target acoustic scattering, the target azimuth tendency is accurately estimated by the splitting beam method to fit the spatial geometric scale formed by multiple highlights. The instantaneous frequencies of highlights are extracted from the time-frequency domain, the Doppler shift of the highlights is calculated, and the motion state of the highlights is estimated. Based on the above processing method, target highlights’ orientation, spatial scale and motion characteristics are fused, and the multiple moving highlights of typical formation distribution in the same beam are accurately identified. The features are applied to processing acoustic scattering data of multiple moving unmanned underwater vehicles (UUVs) on a lake. The results show that multiple small moving underwater targets can be effectively recognized according to the highlight scattering characteristics.
Go to article

Authors and Affiliations

Yang Yang
1
ORCID: ORCID
Jun Fan
1
Bin Wang
1
ORCID: ORCID

  1. Key Laboratory of Marine Intelligent Equipment and System of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
Download PDF Download RIS Download Bibtex

Abstract

The normal mode solution for the form function and target strength (TS) of a solid-filled spherical shell is derived. The calculation results of the spherical shell’s acoustic TS are in good agreement with the results of the finite element method (FEM). Based on these normal mode solutions, the influences of parameters such as the material, radius, and thickness of the inner and outer shells on the TS of a solid-filled spherical shell are analyzed. An underwater spherical shell scatterer is designed, which uses room temperature vulcanized (RTV) silicone rubber as a solid filling material and does not contain a suspension structure inside. The scatterer has a good TS enhancement effect.
Go to article

Authors and Affiliations

Bing Jia
1 2
Jun Fan
1
Gui-Juan Li
2
Bin Wang
1
ORCID: ORCID
Yun-Fei Chen
2

  1. Key Laboratory of Marine Intelligent Equipment and System Ministry of Education Shanghai Jiao Tong University
  2. Science and Technology on Underwater Test and Control Laboratory Dalian, Liaoning, China

This page uses 'cookies'. Learn more