Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.

Go to article

Authors and Affiliations

Ahsene Boubakir
Salim Labiod
Fares Boudjema
Download PDF Download RIS Download Bibtex

Abstract

Nonlinearities in optical fibers deteriorate system performances and become a major performancelimiting issue. This article aims to investigate the compensation of nonlinear distortions in optical communication systems based on different wavelength propagations over few-mode fiber (FMF). The study adopted Space Division Multiplexing (SDM) based on decision feedback equalizer (DFE). Various transmission wavelength of the FMF system is applied to mitigate the attenuation effect on the system. In this paper, different wavelengths (780, 850 and 1550 nm) are used in SDM. Extensive simulation is performed to assess the attenuation and Bit Error Rate (BER) in each case. The results show that the wavelength of 1550 nm produces higher power and less attenuation in the transmission. Furthermore, this wavelength produces the best distance with less BER compared to 780 nm and 850 nm wavelengths. Moreover, the validations show improvement in BER and eye diagram.

Go to article

Authors and Affiliations

A. Al-Dawoodi
A. Fareed
T. Masuda
A. Ghazi
A.M. Fakhrudeen
S.A. Aljunid
S.Z.S. Idrus
A. Amphawan
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the implementation of a DC and AC double-gate MOSFET compact model in the Verilog- AMS language for the transient simulation and the configuration of ultra low-power analog circuits. The Verilog-AMS description of the proposed model is inserted in SMASH circuit simulator for the transient simulation and the configuration of the Colpitts oscillator, the common-source amplifier, and the inverter. The proposed model has the advantages of being simple and compact. It was validated using TCAD simulation results of the same transistor realized with Silvaco Software.
Go to article

Bibliography

[1] N. Arora, “MOSFET Modeling for VLSl Circuit Simulation: Theory and Practice,” World Scientific, 1993.
[2] International Technology Roadmap for Semiconductors. Available: http://www.itrs2.net, 2017.
[3] O. Samy, H. Abdelhamid, Y. Ismail, A. Zekry, “A 2D compact model for lightly doped DGMOSFETs (P-DGFETs) including negative bias temperature instability (NBTI) and short channel effects (SCEs),” Microelectronics reliability, 2016, 67, 82-88.
[4] J-P. Colinge, “FinFETs and Other Multi-Gate Transistors,” Springer, 2008.
[5] A. Amara, “Planar Double-Gate Transistor, From Technology to Circuit,” Springer, 2009.
[6] D. Stefanović, M. Kayal, M, “Structured Analog CMOS Design,” Springer, 2008.
[7] A. Mangla, M.-A. Chalkiadaki, F. Fadhuile, T. Taris, Y. Deval, C. C. Enz, “Design methodology for ultra low-power analog circuits using next generation BSIM6 MOSFET compact model,” Microelectronics journal, 2013, 44, 570-575.
[8] A.B. Bhattacharyya, “Compact MOSFET models for VLSI design,” Wiley, 2009.
[9] B. Smaani, S. Latreche, B. Iñiguez, „Compact drain-current model for undoped cylindrical surrounding-gate MOSFETs including short channel effects,” J. Appl. Phys., 2013, 114.
[10] J-M. Sallese, F. Krummenacher, F. Prégaldiny, „A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism,” Solid-State Electronics, 2012, 49, 485-489.
[11] O. Moldovan, F. Lime, S. Barraud, B. Smaani, „Experimentally verified drain-current model for variable barrier transistor,” IET Electronics Letters, 2015, 51, 17, 364–366.
[12] J. Alvarado, B. Iñiguez, M. Estrada, “Implementation of the symmetric doped double-gate MOSFET model in Verilog-A for circuit simulation,” Int. J. Numer. Model, 2010, 23, 88–106.
[13] O. Cobianu, M. Soffke, A. Glesner, “Verilog-A model of an undoped symmetric dual-gate MOSFET,” Int. Adv. Radio Sci, 2006, 4, 303–306.
[14] M. Cheralathan, E. Contreras, J. Alvarado, “Implementation of nanoscale double-gate CMOS circuits using compact advanced transport models,” Microelectronics Journal, 2013, 44, 80–85. [15] Verilog-AMS User Manual, Accellera 2006.
[16] B. Smaani, M. Bella, S. Latreche, “Compact Modeling of Lightly Doped Nanoscale DG MOSFET Transistor,” Applied Mechanics and Materials, 2014, 492, 06–10.
[17] O. Samy, H. Abdelhamid , Y. Ismail, A. Zekry, “A 2D compact model for lightly doped DG MOSFETs (P-DGFETs) including negative bias temperature instability (NBTI) and short channel effects (SCEs),” Microelectronics Reliability, 2016, 67, 82-88.
[18] Y. Taur, X. Liang, “A continuous, analytic drain-current model for DG MOSFETs,” IEEE Electron device Letters, 2004, 25, 2, 107–109.
[19] J-M. Sallese, A. S. Porret, “A novel approach to charge-based non-quasi-static model of the MOS transistor valid in all modes of operation,” Solid-State Electronics, 2000, 44, 887-894.
[20] H. Børli, S. Kolberg, “Capacitance modeling of short-channel double-gate MOSFETs,” Solid-State Electronics, 2008, 52, 1486–1490.
[21] C. Enz, F. Krummenacher, A.Vittoz, “An analytical MOS Transistor Model Valid in All Regions of Operation Dedicated to low voltage and low current applications,” Analog and integrated Circuits and Signal Processing, 1995, 8, 83-114.
[22] M. Bella, S. Latreche, C. Gontrand, “Nanoscale DGMOSFET: DC modification and Analysis of Noise in RF Oscillator,” Journal of Applied Sciences,2015, 5, 800–807.
[23] R. Blaise, W. Tekam, J. Kengne, G. D. Kenmoe, “High frequency Colpitts’ oscillator: A simple configuration for chaos generation,” Chaos, Solitons & Fractals, 2019, 126, 351–360.
[24] A.Rana1, P. Gaikwad, “Colpitts oscillator: design and performance optimization,” Int. Journal of Applied Sciences and Engineering Research, 2014, 3, 913–919.
[25] SMASH User Manual Version 5.18 Release, 2012.
[26] Device simulator ATLAS, Silvaco International, 2007.
Go to article

Authors and Affiliations

Billel Smaani
1
Yacin Meraihi
2
Fares Nafa
2
Mohamed Salah Benlatreche
3
Hamza Akroum
4
Saida Latreche
5

  1. Ingénierie des Systémes Electriques Department, Faculty of Technology, Boumerdes University, Algeria
  2. Laboratoire d'Ingénierie et Systèmes de Télécommunications, Faculté de Technologie, Boumerdes, Algeria
  3. Centre Universitaire Abdel Hafid Boussouf Mila, Algeria
  4. Laboratoire d’Automatique Appliquée, Université M’Hamed Bougara de Boumerdes, Algeria
  5. Laboratoire Hyperfréquences et Semiconducteurs, Electronique Department, Constantine 1 University, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Over the past decades, using of sustainable materials in construction is a challenging issue, thus Fibre Reinforced Polymers (FRP) took the attention of civil and structural engineers for its lightweight and high-strength properties. The paper describes the results of the shear strength testing of three different types of bars: (i) basalt- FRP (BFRP), (ii) hybrid FRP with carbon and basalt fibres (HFRP) and (iii) nano-hybrid FRP (nHFRP), with modification of the epoxy matrix of the bar. The hybridization of carbon and basalt fibres lead to more costefficient alternative than Carbon FRP (CFRP) bars and more sustainable alternative than Basalt FRP (BFRP) bars. The BFRP, HFRP and nHFRP bars with different diameters ranging from Ø4 to Ø18 mm were subjected to shear strength testing in order to investigate mechanical properties and the destruction mechanism of the bars. Obtained results display a slight downward trend as the bar diameter increase, which is the most noticeable for HFRP bars. In most of the cases, BFRP bars were characterized by greater shear deformation and less shear strength compared to HFRP and nHFRP bars. Performed testing may contribute to comprehensive understanding of the mechanical behavior of those types of FRP bars.
Go to article

Authors and Affiliations

Kostiantyn Protchenko
1
ORCID: ORCID
Fares Zayoud
2
ORCID: ORCID
Marek Urbański
3
ORCID: ORCID

  1. MSc., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. BSc., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  3. PhD., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In vivo biomedical devices are one of the most studied applications for vibrational energy harvesting. In this paper, we investigated a novel high-displacement device for harvesting heartbeats to power leadless implantable pacemakers. Due to the location peculiarities, certain constraints must be respected for the design of such devices. Indeed, the total dimension of the system must not exceed 5.9 mm to be usable within the leadless pacemakers and it must be able to generate accelerations lower than 0.25 m/s2 at frequencies of less than 50 Hz. The proposed design is an electrostatic system based on a square electret of dimension 4.5 mm. It is based on the Quasi-Concertina structure, which has a very low resonant frequency of 26.02 Hz and a low stiffness of 0.492 N/m, allowing it to be very useful in such an application. Using a Teflon electret charged at 1000 V, the device was able to generate an average power of 10.06 μW at a vibration rate of 0.25 m/s2 at the resonant frequency.
Go to article

Authors and Affiliations

Bilel Maamer
1
ORCID: ORCID
Nesrine Jaziri
1 2
ORCID: ORCID
Mohamed Hadj Said
3
ORCID: ORCID
Fares Tounsi
1
ORCID: ORCID

  1. Systems Integration and Emerging Energies (SI2E), École nationale d’ingénieurs de Sfax, Université de Sfax 3038 Sfax, Tunisia
  2. Electronics Technology Group, Institute of Micro and Nanotechnologies MacroNanoTechnische Universität Ilmenau, Gustav-Kirchhoff-Straße 1 Ilmenau 98693, Germany
  3. Center for Research in Microelectronics and Nanotechnology (CRMN) Sousse 4050, Tunisia

This page uses 'cookies'. Learn more