Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study summarised the recent achievement in developing fiber reinforced geopolymer concrete. The factor of replacing Ordinary Portland Cement (OPC) which is due to the emission of carbon dioxide that pollutes the environment globally is well discussed. The introduction towards metakaolin is presented. Besides, the current research trend involved in geopolymer also has been reviewed for the current 20 years to study the interest of researchers over the world by year. Factors that contribute to the frequency of geopolymer research are carried out which are cost, design, and the practicality of the application for geopolymer concrete. Besides, the importance of steel fibers addition to the geopolymer concrete is also well discussed. The fundamental towards metakaolin has been introduced including the source of raw material, which is calcined kaolin, calcined temperature, chemical composition, geopolymerisation process, and other properties. Alkali activators which are mixing solution between sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) have been reviewed. The mechanical properties of fibers reinforced metakaolin-based geopolymer concrete which is compressive and flexural are thoroughly reviewed. The compressive and flexural strength of fiber-reinforced metakaolin geopolymer concrete shows some improvement to the addition of steel fibers. The reviews in this field demonstrate that reinforcement of metakaolin geopolymer concrete by steel fibers shows improvement in mechanical performance.
Go to article

Authors and Affiliations

Meor Ahmad Faris
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 3
ORCID: ORCID
Ratnasamy Muniandy
ORCID: ORCID
Shamala Ramasamy
1 2
ORCID: ORCID
Mohammad Firdaus Abu Hashim
1 2
ORCID: ORCID
Subaer Junaedi
4
ORCID: ORCID
Andrei Victor Sandu
5
ORCID: ORCID
Muhammad Faheem Mohd Tahir
1 3
ORCID: ORCID

  1. University Malaysia Perlis, Faculty of Chemical Engineering Technology, Center of Excellent Geopolymer and Green Technology, Perlis, Malaysia
  2. University Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  3. University Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  4. Universitas Negeri Makasssar, Faculty of Mathematics and Natural Sciences, Indonesia
  5. Gheorge Asachi Technical University of Lasi, Faculty of Materials Science and Engineering, Lasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Geopolymer is formed from the alkali activation of materials rich in Si and Al content with the addition of a silicate solution to enhance the properties of the materials. This paper presents research on the mechanical properties of fly ash-based geopolymer filler in epoxy resin by varying different solid to liquid ratios using sodium hydroxide and sodium silicate as the alkaline activator. However, the common problem observed from the solid to liquid ratio is the influence of curing time and compressive strength of geopolymer to have the best mechanical property. The mix design for geopolymers of solid to liquid ratio is essential in developing the geopolymer’s mechanical strength. A series of epoxy filled with fly ash-based geopolymer materials with different solid to liquid ratio, which is prepared from 0.5 to 2.5 solid to liquid ratio of alkaline activator. The tensile strength and flexural strength of the epoxy filled with fly ash-based geopolymer materials is determined using Universal Testing Machine under tensile and flexural mode. It was found that the optimum solid to liquid ratio is 2.0, with the optimum tensile and flexural strength value. However, both the tensile and flexural properties of epoxy filled with fly ash-based geopolymer suddenly decrease at a 2.5 solid to liquid ratio. The strength is increasing with the increasing solid to liquid ratio sample of geopolymer filler content.
Go to article

Authors and Affiliations

Mohammad Firdaus Abu Hashim
1 2
ORCID: ORCID
Che Mohd Ruzaidi Ghazali
1 3
ORCID: ORCID
Yusrina Mat Daud
1 4
ORCID: ORCID
Meor Ahmad Faris
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 4
ORCID: ORCID
Farah Farhana Zainal
1 4
ORCID: ORCID
Saloma Hasyim
5
ORCID: ORCID
Muhammad Taqiyuddin Lokman
2

  1. Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), School of Materials Engineering, (UniMAP), 02600 Jalan Kangar-Arau, Perlis, Malaysia
  2. Universiti Malaysia Perlis, (UniMAP), Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  3. Universiti Malaysia Terengganu, Faculty of Ocean Engineering Technology and Informatic, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
  4. Universiti Malaysia Perlis, (UniMAP), Faculty of Chemical Engineering Technology, 02600 Jalan Kangar-Arau, Perlis, Malaysia
  5. Sriwijaya University, Civil Engineering Department, Faculty of Engineering, Indonesia

This page uses 'cookies'. Learn more