Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Commercially pure titanium is less expensive, generally more corrosion resistant and lower in strength than its alloys, and is not heat-treatable. The use of Ti and its alloys as construction materials under severe friction and wear conditions is limited due to their poor tribological properties. Nevertheless, proper addition of hard ceramic particles into Ti and its alloys has proved to be an efficient way to enhance their mechanical and wear properties. Our purpose in this work was to analyze the corrosion, tribocorrosion, mechanical and morphological effects of combining titanium carbide with titanium metal, to create a unique composite via spark plasma sintering technique (SPS). Composites with different mass percentage (1, 5, 10, 15 and 20 wt %) of ceramic phase were produced. The samples of pure Ti and Ti-6Al-4V alloy were also tested, as a reference. These composites were examined for mechanical properties and corrosion resistance in an environment similar to the human body (Ringer’s solution). Open circuit potential (OPC) and anodic polarization measurements were performed. The properties of titanium composites reinforced with micro- and nanocrystalline TiC powders were compared. It was stated that wear properties were significantly improved with increasing amount of TiC in matrix, especially in the case of nanocrystalline reinforcement. In terms of corrosion resistance, the composites showed slightly worse properties compared to pure titanium and Ti-6Al-4V alloy.

Go to article

Authors and Affiliations

P. Figiel
D. Garbiec
A. Biedunkiewicz
W. Biedunkiewicz
P. Kochmański
R. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

Peri-implantitis is a pathological condition occurring in tissues around dental implants, characterized by inflammation in the peri-implant connective tissue and progressive loss of supporting bone. In the treatment of peri-implantitis, a laser surgical technique is used. Lasers are a safe and gentle alternative to traditional dental tools. They allow oral surgeons and dentists to accomplish more complex tasks, reduce blood loss, decrease post-operative discomfort, reduce the chance of wound infection, achieve better wound healing and perform some procedures in close methods without access flap. The aim of the work was to determine the impact of laser surface treatment of titanium dental implants on its electrochemical behavior in artificial saliva at 37°C. The study used an Er,Cr:YSGG laser and diode lasers 810 nm and 980 nm for debridement of titanium implant surface. In the research, the thread on the surface of implant was scanned with the diode laser beam of energy 1, 1.25, 1.5 and 2 W, cw and Er, Cr YSGG: 1,5 and 2W, pulse 30Hz.

Go to article

Authors and Affiliations

A. Biedunkiewicz
E. Dembowska
P. Figiel
W. Biedunkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The addition of hard ceramic particles of nc-(Ti,Mo)C in carbon network into Ti matrix has been proved to be an efficient way to enhance their properties. The purpose of this work was to analyze the corrosion, tribological, mechanical and morphological effects of combining nc-(Ti,Mo)C/C with titanium metal, to create a unique composite via selective laser melting technique (SLM). Composites with different weight percentage (5, 10 and 20 wt %) of ceramic phase were produced. The samples of pure Ti and Ti-6Al-4V alloy were also tested, as a reference. These composites were examined for corrosion resistance in body fluid (artificial saliva solution). Moreover, the properties of titanium composites reinforced with nc-TiC powders were compared. It was stated that mechanical properties were significantly improved with increasing amount of nc-(Ti,Mo)C/C in Ti matrix. In terms of corrosion resistance, the composites showed worse properties compared to pure titanium and Ti-6Al-4V alloy, but better than TiC-reinforced composites.

Go to article

Authors and Affiliations

P. Figiel
A. Biedunkiewicz
W. Biedunkiewicz
D. Grzesiak
M. Pawlyta

This page uses 'cookies'. Learn more