Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to evaluate in detail both the in vivo and in vitro efficacy of the enzyme agents, ZYMOX® Plus Otic (ZYMOX-P), in the treatment of canine otitis externa (OE). Eight dogs with a diagnosis of non-seasonal severe chronic OE were recruited for the study. ZYMOX-P was administered for 2-4 weeks. The Otitis Index Score (OTIS3) and bacteria or yeast colony growth were measured. Also, minimum biofilm (BF) formation inhibition concentration (MBIC) and BF bactericidal concentration (BBC) were measured in vitro. OTIS3 showed a statistically significant reduction after treatment (88.2%, p<0.001; pre-treatment = 11.0 ± 0.9; post-treatment = 1.3 ± 0.4, mean ± SEM). The individual OTIS scores, erythema, edema, erosions/ ulcerations, exudate and pruritus showed significant reduction (85.7%, 95.7%, 83.3%, 80.0%, and 89.3%, respectively). Microscopic examination revealed the presence of BF exopolysaccharide in all 8 ear samples when stained with alcian blue. Seven of the 8 dogs (87.5%) showed a reduction in colony growth. ZYMOX-P was effective at 34-fold and 16-fold dilutions on MBIC and BBC, respectively. These findings indicate that ZYMOX-P has efficacy against BF-related infection and is beneficial when used for the management of canine OE.
Go to article

Bibliography

Ayrapetyan M, Williams T, Oliver JD (2018) Relationship between the viable but nonculturable state and antibiotic persister cells. J Bacteriol 200: e00249-18.
Bowen WH (2016) Dental caries - not just holes in teeth! A perspective. Mol Oral Microbiol 31: 228-233.
Bradley CW, Lee FF, Rankin SC, Kalan LR, Horwinski J, Morris DO, Grice EA, Cain CL (2020) The otic micro- biota and mycobiota in a referral population of dogs in eastern USA with otitis externa. Vet Dermatol 31: 225-e49.
Carlsson J, Iwami Y, Yamada T (1983) Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect Immun 40: 70-80.
Chan WY, Hickey EE, Hickey, Page SW, Trott DJ, Hill PB (2019) Biofilm production by pathogens associated with canine otitis externa and the antibiofilm activity of ionophores and antimicrobial adjuvants. J Vet Pharmacol Ther 42: 682-692.
Cunha E, Trovão T, Pinheiro A, Nunes T, Santos R, Moreira da Silva J, São Braz B, Tavares L, Veiga AS, Oliveira M (2018) Potential of two delivery systems for nisin topical application to dental plaque biofilms in dogs. BMC Vet Res 14: 375.
Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2: 114-122.
Ding L, Su X, Yokota A (2011) Research progress of VBNC bacteria-a review. Wei Sheng Wu Xue Bao 51: 858-862.
Forssten SD, Björklund M, Ouwehand AC (2010) Streptococcus mutans, caries and simulation models. Nutrients 2: 290-298.
Harms A, Maisonneuve E, Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354: aaf4268.
Holá V, Růzicka F, Votava. M (2004) Differences in antibiotic sensitivity in biofilm-positive and biofilm-negative strains of Staphylococcus epidermidis isolated from blood cultures. Epidemiol Mikrobiol Imunol 53: 66-69.
Jacobson LS (2002) Diagnosis and medical treatment of otitis externa in the dog and cat. J S Afr Vet Assoc 73: 162-170.
Klancnik A, Guzej B, Jamnik P, Vucković D, Abram M, Mozina SS (2009) Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Res Microbiol 160: 345-352.
Li H., Wei X, Yang J, Zhang R, Zhang Q, Yang J (2019) The bacteriolytic mechanism of an invertebrate-type lysozyme from mollusk Octo-pus ocellatus. Fish Shellfish Immunol 93: 232-239.
Nuttall T, Bensignor E (2014) A pilot study to develop an objective clinical score for canine otitis externa. Vet Dermatol 25: 530-537.
Otsuka R., Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015) Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol 59: 28-36.
Peters JL, DeMars PL, Collins LM, Stoner JA, Matsumoto H, Komori N, Singh A, Feasley CL, Haddock JA, Levine M (2012) Effects of immunization with natural and recombinant lysine decarboxylase on canine gingivitis development. Vaccine 30: 6706-6712.
Qekwana DN, Oguttu JW, Sithole F, Odoi A (2017) Patterns and predictors of antimicrobial resistance among Staphylococcus spp. from canine clinical cases presented at a veterinary acadeic hospital in South Africa. BMC Vet Res 116.
Schulthess B, Bloemberg GV, Zbinden R EC, Böttger EC, Hombach MJ (2014) Evaluation of the Bruker MALDI Biotyper for identification of Gram-positive rods: deve- lopment of a diagnostic algorithm for the clinical laboratory. J Clin Microbiol 52: 1089-1097.
Stone VN, Xu P (2017) Targeted antimicrobial therapy in the microbiome era. Mol Oral Microbiol 32: 446-454.
Su X, Chen X, Hu J, Shen C, Ding L (2013) Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 29: 2213-2218.
Tsukatani T, Sakata F, Kuroda R (2020) A rapid and simple measurement method for biofilm formation inhibitory activity using 96-pin micro-titer plate lids. World J Microbiol Biotechnol 36: 189.
Wu MT, Burnham CA, Westblade LF, Dien Bard J, Lawhon SD, Wallace MA, Stanley T, Burd E., Hindler J, Humphries RM (2016) Evaluation of oxacillin and cefoxitin disk and MIC breakpoints for prediction of methicillin resistance in human and veterinary isolates of Staphy-lococcus intermedius Group. J Clin Microbiol 54: 535-542.
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serra-no-Luna J, de la Garza M (2020) Lactoferrin and its derived peptides: an alternative for combating virulence mechanisms developed by patho-gens. Molecules 25: 5763.
Zhu K, Zheng J, Xing J, Chen S, Chen R, Ren L (2022) Mechanical, antibacterial, biocompatible and microleakage evaluation of glass iono-mer cement modified by nanohydroxyapatite/polyhexamethylene biguanide. Dent Mater J 41: 197-208.
Go to article

Authors and Affiliations

M. Fujimura
1

  1. Fujimura Animal Allergy Hospital, Aomatanihigashi 5-10-26, Minou-city, Osaka 562-0022, Japan

This page uses 'cookies'. Learn more