Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the first vertical-cavity surface-emitting lasers (VCSELs) designed, grown, processed and evaluated entirely in Poland. The lasers emit at »850 nm, which is the most commonly used wavelength for short-reach (<2 km) optical data communication across multiple-mode optical fiber. Our devices present state-of-the-art electrical and optical parameters, e.g. high room-temperature maximum optical powers of over 5 mW, laser emission at heat-sink temperatures up to at least 95°C, low threshold current densities (<10 kA/cm2) and wall-plug efficiencies exceeding 30% VCSELs can also be easily adjusted to reach emission wavelengths of around 780 to 1090 nm.
Go to article

Bibliography

  1.  R.N. Hall, G.E. Fenner, R.J. Kingsley, T.J. Soltys, and R.D. Carlson, “Coherent light emission of radiation from GaAs junctions”, Phys. Rev. Lett. 9(9), 366–368 (1962).
  2.  M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dill Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions”, Appl. Phys. Lett. 1(3), 62–64 (1962).
  3.  N. Holonyak, Jr. and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx), junctions”, Appl. Phys. Lett. 1(4), 82–83 (1962).
  4.  T.M. Quist et al., “Semiconductor maser of GaAs”, Appl. Phys. Lett. 1(4), 91–92 (1962).
  5.  I. Hayashi, M.B. Panish, P.W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature”, Appl. Phys. Lett. 17(3), 109–110 (1970).
  6.  J.A. Lott, “Vertical Cavity Surface Emitting Laser Diodes for Communication, Sensing, and Integration” in Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol. 194, Eds. M. Kneissl, A. Knorr, S. Reitzenstein, A. Hoffmann, Springer, Cham, 2020.
  7.  I. Melngailis, “Longitudinal injection plasma laser of InSb”, Appl. Phys. Lett. 6(3), 59–60 (1965).
  8.  R. Dingle, W. Wiegmann, and C.H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs–AlxGa1-xAs heterostructures”, Phys. Rev. Lett. 33(14), 827–830 (1974).
  9.  J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann, and W.A. Nordland Jr, “Laser oscillation from quantum states in very thin GaAs- Al0.2Ga0.8As multilayer structures”, Appl. Phys. Lett. 26(8), 463–465 (1975).
  10.  J.P. van der Ziel, and M. Ilegems, “Multilayer GaAs-A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy”, Appl. Opt. 14(11), 2627–2630 (1975).
  11.  D.R. Scifres, R.D. Burnham, and W. Streifer, “Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed- feedback lasers”, Appl. Phys. Lett. 26(2), 48–50 (1975).
  12.  D. Scifres and R.D. Burnham, Distributed feedback diode laser, US Patent US 3983509, 28 Sep 1976.
  13.  H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GalnAsP/lnP surface emitting injection lasers”, Jpn. J. Appl. Phys. 18(12), 2329 (1979).
  14.  M. Ogura, T. Hata, N.J. Kawai, and T. Yao, “GaAs/AlxGa1−xAs multilayer reflector for surface emitting laser diode”, Jpn. J. Appl. Phys. 22(2A), L112–L114 (1983).
  15.  M. Ogura, T. Hata, and T. Yao, “Distributed feed back surface emitting laser diode with multilayeredheterostructure”, Jpn. J. Appl. Phys. 23(7A), L512–L514 (1984).
  16.  M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1−xAs/GaAs multilayered heterostructure”, J. Vac. Sci. Technol. B 3(2), 784–787 (1985).
  17.  F. Koyama, F. Kinoshita, and K. Iga, “Room temperature cw operation of GaAs vertical cavity surface emitting laser”, Trans. IEICE Jpn. E71(11), 1089–1090 (1988).
  18.  P. Boulay, “After 20 years the VCSEL business has found its killer application – and is likely to explode”, European VCSEL Day, Brussels, 2019.
  19.  M. Gębski, P.S. Wong, M. Riaziat, and J.A. Lott, “30 GHz bandwidth temperature stable 980 nm VCSELs with AlAs/GaAs bottom DBRs for optical data communication”, J. Phys. Photonics, 2(3), 035008 (2020).
  20.  N. Haghighi, P. Moser, and J.A. Lott, “Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays”, IEEE J. Sel. Top. Quantum Electron. 25(6), 1–15 (2019).
  21.  S. Okur, M. Scheller, J.F. Seurin, A. Miglo, G. Xu, D. Guo, R. Van Leeuwen, B. Guo, H. Othman, L. Watkins, and C. Ghosh, “High-power VCSEL arrays with customized beam divergence for 3D-sensing applications”, in Vertical-Cavity Surface-Emitting Lasers XXIII 2019, International Society for Optics and Photonics, 2019, vol. 10938, p. 109380F.
  22.  I. Fujioka, Z. Ho, X. Gu, and F. Koyama, “Solid state LiDAR with sensing distance of over 40m using a VCSEL beam scanner”, In 2020 Conference on Lasers and Electro-Optics (CLEO) 2020, 2020, art. 10(1–2).
  23.  B. Darek, B. Mroziewicz, and J. Świderski. “Polish-made laser using a gallium arsenide junction (Gallium arsenide laser design using p-n junction obtained by diffusion of zinc in tellurium doped n-GaAs single crystal)”, Archiwum Elektrotechniki 15(1), 163–167 (1966).
  24.  P. Prystawko et al., “Blue-Laser Structures Grown on Bulk GaN Crystals”, Phys. Status Solidi A 192(2), 320–324 (2002).
  25.  K. Kosiel et al., “77 K Operation of AlGaAs/GaAs Quantum Cascade Laser at 9 mm”, Photonics Letters of Poland 1(1), 16–18, 2009.
  26.  J. Muszalski et al., “InGaAs resonant cavity light emitting diodes (RC LEDs)”, 9th Int. Symp. “Nanostructures: Physics and Technology” MPC.04, St Petersburg, Russia, 2001.
  27.  A.G. Baca and C.I. Ashby, “Fabrication of GaAs devices, chapter 10 “Wet oxidation for optoelectronic and MIS GaAs devices”, IET, London, United Kingdom, 2005.
  28.  Trumpf, Single and multiple-mode VCSELs. [Online] https://www.trumpf.com/en_US/products/vcsel-solutions-photodiodes/single- multiple-mode-vcsels/single-mode-vcsels/
  29.  F.A.I. Chaqmaqchee and J.A. Lott, “Impact of oxide aperture diameter on optical output power, spectral emission, and bandwidth for 980 nm VCSELs”, OSA Continuum, 3(9), 2602–2613 (2020).
  30.  J. Lavrencik et al., “Error-free 850 nm to 1060 nm VCSEL links: feasibility of 400Gbps and 800Gbps 8λ-SWDM”, Proceedings 45th European Conference on Optical Communication (ECOC), Dublin, Ireland, 2019, P84.
  31.  E. Simpanen et al., “1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects”, J. Lightwave Technol. 37(13), 2963–2969 (2019).
Go to article

Authors and Affiliations

Marcin Gębski
1
ORCID: ORCID
Patrycja Śpiewak
1
ORCID: ORCID
Walery Kołkowski
2
Iwona Pasternak
2
Weronika Głowadzka
1
Włodzimierz Nakwaski
1
Robert P. Sarzała
1
ORCID: ORCID
Michał Wasiak
1
ORCID: ORCID
Tomasz Czyszanowski
1
Włodzimierz Strupiński
2

  1. Photonics Group, Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924 Łódź
  2. Vigo System S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki

This page uses 'cookies'. Learn more