Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work, we propose a new method for manufacturing busbars in photovoltaic modules for different solar cell generations, focusing on 1st and 3rd generations. The method is based on high-pressure spray coating using nanometric metallic powder. Our focus is primarily on optimizing conductive paths for applications involving conductive layers used in 3rd generation solar cells, such as quantum dot solar cell, dye-sensitized solar cell, and silicon-based solar cells on glass-glass architecture for buildingintegrated photovoltaic. The advantages of the proposed method include the possibility of reducing the material quantity in the conductive paths and creating various shapes on the surface, including bent substrates.
This paper examines the influence of the proposed high-pressure spraying technique using metallic particles on the morphology of the resulting conductive paths, interface characteristics, and electrical parameters. Conductive paths were created on four different layers commonly used in photovoltaic systems, including transparent conductive oxide, Cu, Ti, and atomic layer deposition processed Al 2O 3. The use of high-pressure technology enables the production of conductive layers with strong adhesion to the substrate and precise control of the spatial parameters of conductive paths. Furthermore, the temperature recorded during the deposition process does not exceed 385 K, making this technique suitable for various types of substrates, including glass and silicon. Additionally, the produced layers exhibit low resistance, measuring less than 0.3Ω . Finally, the mechanical resistance, as determined through tearing tests, as well as environmental and time stability, have been confirmed for the produced paths.

Go to article

Authors and Affiliations

Paweł Kwaśnicki
1 2
Anna Gronba-Chyła
1
Agnieszka Generowicz
3
Józef Ciuła
4
Iwona Wiewiórska
5
Krzysztof Gaska
6

  1. John Paul II Catholic University of Lublin, Faculty of Natural and Technical Sciences, Konstantynów 1 H, 20-708 Lublin, Poland
  2. Research & Development Centre for Photovoltaics, ML System S.A., Zaczernie 190G, 36-062 Zaczernie, Poland
  3. Cracow University of Technology, Department of Environmental Technologies, Warszawska 24, 31-155 Cracow, Poland
  4. State University of Applied Sciences in Nowy Sacz, Faculty of Engineering Sciences, Zamenhofa 1A, 33-300 Nowy Sacz, Poland
  5. Sadeckie Wodociagi sp. z o.o., W. Pola 22, 33-300 Nowy Sacz, Poland
  6. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the use of multi-criteria analysis as a tool that helps choosing an adequate technology for a household wastewater treatment plant. In the process of selection the criteria of sustainable development were taken into account. Five municipal mechanical-biological treatment plants were chosen for the comparative multi-criteria analysis. Different treatment technologies, such as sand filter, activated sludge, trickling filter, a hybrid system - activated sludge/trickling filter and a hybrid constructed wetland system VF-HF type (vertical and horizontal fl ow) were taken into account. The plants’ capacities were 1 m3∙d-1 (PE=8) and they all meet the environmental regulations. Additionally, a solution with a drainage system was included into the analysis. On the basis of multi-criteria analysis it was found that the preferred wastewater treatment technologies, consistent with the principles of sustainable development, were a sand filter and a hybrid constructed wetland type VF-HF. A drainage system was chosen as the best solution due to the economic criteria, however, taking into consideration the primary (ecological) criterion, employment of such systems on a larger scale disagree with the principles of sustainable development. It was found that activated sludge is the least favourable technology. The analysis showed that this technology is not compatible with the principles of sustainable development, due to a lack of proper technological stability and low reliability.

Go to article

Authors and Affiliations

Krzysztof Jóźwiakowski
Zbigniew Mucha
Agnieszka Generowicz
Stanisław Baran
Jolanta Bielińska
Włodzimierz Wójcik

This page uses 'cookies'. Learn more