Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Beam-to-column end-plate joints can be classified as rigid (fully restrained), semi-rigid (partiallyrestrained) or pinned, depending on their type, configuration and the connector arrangement. Fullyrestrained joints are needed for rigid frames in which there is assumed that the frame joints havesufficient rigidity to maintain – under the service state – the angles between the intersecting mem-bers, ensuring the full moment transfer. In contrast in semi-continuous frames, partially restrainedjoints are characterized by relative rotations occurring between the intersecting members so thatthe bending moment can only be transferred partially. In recent years, the idea of using partiallyrestrained, unstiffened joints in building structures has gained momentum since this idea appearsto be more practical and economical. Semi-continuous frames can resist actions by the bendingmoment transfer in partially restrained joints, allowing in the same time for a certain degree ofrotation that enhances the overall ductile performance of these structures. One of the effective waysthat affects ductility of end-plate beam-to-column joints is to use thinner end-plates than those usednowadays in practical applications. In the current study, a certain class of steel-concrete compositejoints is examined in which the thickness of end-plates is to be equivalent to approximately 40-60% of the bolt diameter used in all the composite joints investigated in the considered joint class. Thispaper is an extension of the authors’ earlier investigation on numerical modelling of the behaviourof steel frame joints. The aim of current investigations is to develop as simple as possible andyet reliable three-dimensional (3D) FE model of the composite joint behaviour that is capable ofcapturing the important factors controlling the performance of steel-concrete end-plate joints inwhich the end-plate thickness is chosen to be lesser than that used nowadays in conventional jointdetailing. A 3D FE model constructed for composite joints of the considered joint class is reportedin this paper and numerical simulations using the ABAQUS computer code are validated againstexperimental investigations conducted at the Warsaw University of Technology. Comparison betwe-en the nonlinear FE analysis and full scale experimental results of the considered class of compositejoints is presented which conclusively allows for the accuracy assessment of the modelling tech-nique developed. Comparison between the FE results and test data shows a reasonable agreementbetween the numerical FE model developed and physical model of experimentally examined jointspecimens. Finally, practical conclusions for engineering applications are drawn.

Go to article

Authors and Affiliations

M.A. Giżejowski
W. Barcewicz
W. Salah
Download PDF Download RIS Download Bibtex

Abstract

Assessment of the flexural buckling resistance of bisymmetrical I-section beam-columns using FEM is widely discussed in the paper with regard to their imperfect model. The concept of equivalent geometric imperfections is applied in compliance with the so-called Eurocode’s general method. Various imperfection profiles are considered. The global effect of imperfections on the real compression members behaviour is illustrated by the comparison of imperfect beam-columns resistance and the resistance of their perfect counterparts. Numerous FEM simulations with regard to the stability behaviour of laterally and torsionally restrained steel structural elements of hot-rolled wide flange HEB section subjected to both compression and bending about the major or minor principal axes were performed. Geometrically and materially nonlinear analyses, GMNA for perfect structural elements and GMNIA for imperfect ones, preceded by LBA for the initial curvature evaluation of imperfect member configuration prior to loading were carried out. Numerical modelling and simulations were conducted with use of ABAQUS/Standard program. FEM results are compared with those obtained using the Eurocode’s interaction criteria of Method 1 and 2. Concluding remarks with regard to a necessity of equivalent imperfection profiles inclusion in modelling of the in-plane resistance of compression members are presented.

Go to article

Authors and Affiliations

M.A. Giżejowski
R.B. Szczerba
M.D. Gajewski
Z. Stachura
Download PDF Download RIS Download Bibtex

Bibliography

1. https://shellbuckling.com/cv/trahair.pdf - Tribute by Profs. Mark A. Bradford and Gregory J. Hancock to Prof. Nick Trahair on his retirement in 1998.
Go to article

Authors and Affiliations

M.A. Giżejowski
1
J. Papangelis
2

  1. Prof., DSc., PhD., C. Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. PhD., C. Eng., Research and Consulting, School of Civil Engineering, University of Sydney, NSW 2006,Australia
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with determination of flexural resistance buckling curves for welded I-section steel members made of high strength steel (S 690). In the paper the previously proposed BF analytical model is used for approximation of FEM results obtained using moderately large deformation shell theory and ABAQUS/Standard software. Final formulation of flexural resistance buckling curves is possible through the use of the Merchant-Rankine-Murzewski approach adopted extensively in the authors’ previous papers. For nonlinear optimization, which is needed for analytical model parameters determination, the Wolfram Mathematica package is used. Obtained results for S 690 steel are presented against the results for S 355 steel.

Go to article

Authors and Affiliations

M.D. Gajewski
M.A. Giżejowski
R.B. Szczerba

This page uses 'cookies'. Learn more