Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Commercialization processes are modeled and analyzed from the point of view of the implementation of activities under particular stages. These issues are the subject of many studies and analyzes, which is why the extensive literature is available on this subject. Technology valuation at various stages of the commercialization process is a separate issue. Such valuation is prepared in most cases by consulting companies for determining the price in the buying and selling processes. These valuations use known methods also used in other cases, e.g., real estate valuation. The work carried out presents the author’s concept of the commercialization process model, taking into account the costs and value of the technology at various stages of the product life cycle. The model uses a stochastic approach to determine future revenues and costs, which allows estimating the value of the technology by or in determining the probability of assessment validity. The proposed stochastic approach greatly increases the chances of using the presented solutions in practical activities related to technology valuation for the purposes of purchase and sale transactions.
Go to article

Authors and Affiliations

Bozena Kaczmarska
1
Wacław Gierulski
1
ORCID: ORCID
Josef Zajac
2
Anton Bittner
2
Wacław Gierulski
1

  1. Kielce University of Technology, Poland
  2. Technical University of Kosice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Horizontal Directional Drilling (HDD) is a very complex technology. Although the installation of pipelines by means of this technology is often successful, examples of unsuccessful projects are also known. Due to the complexity of the technology, with the interaction of multiple processes, risks related to uncertainties in these processes play important role. These risks are related to the variability of underground strata, changing natural environment, changes in economic environment, as well as limitations of the equipment, technical disruptions and human factors. This paper describes the risk evaluation results of the FMEA and a Pareto– Lorenz analysis for 14 external risk factors (8 natural or environmental risk factors as well as 6 economic risk factors) in HDD technology. In the proposed approach not only the probability of the external risk factor occurrence was considered, but also its consequences and the ability to detect faults, which were not plainly separated and taken into account in the literature so far. Such an approach has shown the relationship between occurrence, severity and detection for the analysed external failures. Moreover, 40 detection possibilities for the external risks in HDD technology were identified. The calculated risk priority numbers enabled ranking HDD external failures and identified the most critical risks for which the suggested detection options were unsatisfactory and insufficient, and therefore other types of risk response actions need to be explored.
Go to article

Authors and Affiliations

Maria Krechowicz
1
ORCID: ORCID
Wacław Gierulski
1
ORCID: ORCID
Stephen Loneragan
2
Henk Kruse
3

  1. Kielce University of Technology, Faculty of Management and Computer Modelling, Poland
  2. HDD Engineering, Australia
  3. Deltares, the Netherlands
Download PDF Download RIS Download Bibtex

Abstract

Horizontal Directional Drilling (HDD) technology is a highly complex process connected with high risk and uncertainty due the high variability underground strata, often limited access to specialised equipment, dynamic natural environment, technical disruptions, human factor and changes in economic environment that further complicate the gathering of reliable information and data. This work presents a new risk evaluation model tailored for HDD technology, in which failure mode and effect analysis (FMEA) modelling were applied. This paper focuses on 15 human risk factors and 9 equipment risk factors in HDD technology. The proposed approach takes into account not only the probability of the risk factor occurrence, but also its severity and the possibility of detecting faults, which were not clearly separated and analyzed in the previous works. Application of the proposed model shows the relationship between occurrence, severity and detection for the analyzed failures. Moreover, many detection possibilities for the identified failures were presented. The calculated risk priority numbers allowed to rank HDD failures and identify the most critical risks for which one should look for risk treatment possibilities beyond risk cause reduction, such as risk effect reduction, risk transfer, risk elimination or active risk retention.
Go to article

Authors and Affiliations

Maria Krechowicz
1
ORCID: ORCID
Wacław Gierulski
1
ORCID: ORCID
Stephen Loneragan
2
Henk Kruse
3

  1. Kielce University of Technology, Poland
  2. HDD Engineering, Australia
  3. Deltares, the Netherlands

This page uses 'cookies'. Learn more