Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents different approaches to the proper and accurate production and modelling (multi- phase reaction) of CaCO3 formation in the most popular, different types of reactors, i.e. continuous reactor (STR – stirred tank reactors, MSMPR – mixed suspension, mixed product removal; tube reactor), a bubble column reactor and a thin film reactor.
Many different methods of calcium carbonate production and their effect on the various characteristics of the product have been presented and discussed. One of the most important, from the point of view of practical applications, is the morphology and size of the produced particles as well as their agglomerates and size distribution. The size of the obtained CaCO3 particles and their agglomerates can vary from nanometers to micrometers. It depends on many factors but the most important are the conditions calcium carbonate precipitation and then stored.
The experimental research was strongly aided by theoretical considerations on the correct description of the process of calcium carbonate precipitation. More than once, the correct modelling of a specific process contributed to the explanation of the phenomena observed during the experiment (i.e. formation of polyforms, intermediate products, etc.).
Moreover, different methods and approaches to the accurate description of crystallization processes as well as main CFD problems has been widely reviewed. It can be used as a basic material to formulation and implementation of new, accurate models describing not only multiphase crystallization processes s taking place in different chemical reactors.
Go to article

Bibliography

Auone A., Ramshaw C., 1999. Process intensification: Heat and mass transfer characteristics of liquid films on rotating discs. Int. J. Heat Mass Transfer, 42, 2543-2556. DOI: 10.1016/S0017-9310(98)00336-6.
Baldyga J., Bourne J.R., 1984a. A fluid mechanical approach to turbulent mixing and chemical reaction. Part I: Inadequacies of available methods. Chem. Eng. Commun., 28, 231–241. DOI: 10.1080/00986448408940135.
Baldyga J., Bourne J.R., 1984b. A fluid mechanical approach to turbulent mixing and chemical reaction. Part II: Mi- cromixing in the light of turbulence theory. Chem. Eng. Commun., 28, 243–258. DOI: 10.1080/00986448408940136.
Baldyga J., Bourne J.R., 1984c. A fluid mechanical approach to turbulent mixing and chemical reaction. Part III: Computational and experimental results for the new micromixing model. Chem. Eng. Commun., 28, 259–281. DOI: 10.1080/00986448408940137.
Baldyga J., Podgorska W., Pohorecki R., 1995. Mixing-precipitation model with application to double feed semibatch precipitation . Chem. Eng. Sci., 50, 1281–1300. DOI: 10.1016/0009-2509(95)98841-2.
Bandyopadhyaya R., Kumar R., Gandhi K.S., 2001. Modelling of CaCO3 nanoparticle formation during overbasing of lubricating oil additive. Langmuir, 17, 1015–1029. DOI: 10.1021/la000023r.
Bao W., Li H., Zhang Y., 2009. Preparation of monodispersed aragonite microspheres via a carbonation crystal- lization pathway. Cryst. Res. Technol., 44, 395–401. DOI: 10.1002/crat.200800065.
Boodhoo K.V.K., Jachuck R.J.J., 2000. Process intensification: Spinning disc reactor for condensation polymeriza- tion. Green Chem., 2, 235–244. DOI: 10.1039/b002667k.
Burns J.R., Jachuck R.J.J., 2005. Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements. AIChE J., 51, 1497–1507. DOI: 10.1002/aic.10414.
Cafiero L.M., Baffi G., Chianese A., Jachuck R.J.J., 2002. Process intensification: precipitation of barium sulfate using a spinning disk reactor. Ind. Eng. Chem. Res., 41, 5240–5246. DOI: 10.1021/ie010654w.
Chakraborty D., Bhatia S.K., 1996. Formation and aggregation of polymorphs in continuous precipitation. 2. Kinetics of CaCO3 precipitation. Ind. Eng. Chem. Res., 35, 1995–2006. DOI: 10.1021/ie950402t.
Chen J.F., Wang Y.H., Guo F., Wang X.M., Zheng, Ch., 2000. Synthesis of nanoparticles with novel technology: High-gravity reactive precipitation. Ind. Eng. Chem. Res., 39, 948–954. DOI: 10.1021/ie990549a.
Chen P.-C., Tai C.Y., Lee K.C., 1997. Morphology and growth rate of calcium carbonate crystals in a gas-liquid-solid reactive crystallizer. Chem. Eng. Sci., 52, 4171–4177. DOI: 10.1016/S0009-2509(97)00259-5.
Cheng B., Lei M., Yu J., Zhao X., 2004. Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction. Materials Lett., 58, 1565–1570. DOI: 10.1016/j.matlet.2003.10.027.
Colfen H., Antonietti M., 2005. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed., 44, 5576–5591. DOI: 10.1002/anie.200500496.
Collier A.P., Hounslow M.J., 1999. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE J., 45, 2298–2305. DOI: 10.1002/aic.690451105.
Czaplicka N., Konopacka-Łyskawa D., 2019. The overview of reactors used for the production of precipitated tion route. Aparatura Badawcza i Dydaktyczna, 24(1), 83–90.
Dindore V.Y., Brilman D.W.F., Versteeg G.F., 2005. Hollow fiber membrane contactor as a gas–liquid model contactor. Chem. Eng. Sci., 60, 467–479. DOI: 10.1016/j.ces.2004.07.129.
Ding L., Wu B., Luo P. 2018. Preparation of CaCO3 nanoparticles in a surface-aerated tank stirred by a long-short blades agitator. Powder Technol., 333, 339–346. DOI: 10.1016/j.powtec.2018.04.057.
Eek R.A., Dijkstra S., Van Rosmalen G.M., 1995. Dynamic modeling of suspension crystallisers using experimental data. AIChE J., 41, 571–584. DOI: 10.1002/aic.690410315.
Feng B., Yonga A.K., Ana H., 2007. Effect of various factors on the particle size of calcium carbonate formed in a precipitation process. Mater. Sci. Eng., A, 445–446, 170–179. DOI: 10.1016/j.msea.2006.09.010.
Ferziger J.H., Perić, M., 1996. Computational methods for fluid dynamics, Springer-Verlag, Berlin, Germany.
Gahn C., Mersmann A., 1999. Brittle fracture in crystallization processes. Part A. Attrition and abrasion of brittle solids. Chem. Eng. Sci., 54, 1273–1282. DOI: 10.1016/S0009-2509(98)00450-3.
Garside J., Davey R.J., 1980. Invited review secondary contact nucleation: kinetics, growth and scale-up. Chem. Eng. Commun., 4, 393–424. DOI: 10.1080/00986448008935918.
Grimes C.J., Hardcastle T., Manga M.S., Mahmud T., York D.W., 2020. Calcium carbonate particle formation through precipitation in a stagnant bubble and a bubble column reactor. Cryst. Growth Des., 20, 5572–5582. DOI: 10.1021/acs.cgd.0c00741.
Hill P.J., Ng K.M., 1995. New discretization procedure for the breakage equation. AIChE J., 41, 1204–1217. DOI: 10.1002/aic.690410516.
Hindmarsh A.C., 1983. ODEPACK, A Systematized collection of ODE solvers, In: Stepleman R.S., Carver M., Peskin R., Ames W.F., Vichnevetsky R. (Eds.). Scientific Computing, North-Holland, Amsterdam, 1983, 55–64.
Hostomsky J., Jones A.G., 1991. Calcium carbonate crystallization, agglomeration and form during continuous precipitation from solution. J. Phys. D: Appl. Phys., 24, 165–170. DOI: 10.1088/0022-3727/24/2/012.
Hounslow M.J., 1990. A discretized population balance for continuous systems at steady state. AIChE J., 36, 106–116. DOI: 10.1002/aic.690360113.
Hounslow M.J.; Ryall R.L., Marshall V.R., 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE J., 34, 1821–1832. DOI: 10.1002/aic.690341108.
Hounslow M.J., Mumtaz H.S., Collier A.P., Barrick J.P., Bramley A.S., 2001. A micro mechanical model for the rate of aggregation during precipitation from solution. Chem. Eng. Sci., 56, 2543–2552. DOI: 10.1016/S0009- 2509(00)00436-X.
Hulburt H.M., Katz S., 1964. Some problems in particle technology – statistical mechanical formulation. Chem. Eng. Sci., 19, 555–574. DOI: 10.1016/0009-2509(64)85047-8.
Jones A.G., Rigopoulos S., Zauner R., 2005. Crystallization and precipitation engineering. Comput. Chem. Eng., 29, 1159-1166. DOI: 10.1016/j.compchemeng.2005.02.022.
Judat B., Kind M., 2004. Morphology and internal structure of barium sulfate – derivation of a new growth mechanism. J. Colloid Interface Sci., 269, 341–353. DOI: 10.1016/j.jcis.2003.07.047.
Jung T., Kim W.S., Choi Ch.K., 2004. Effect of nonstoichiometry on reaction crystallization of calcium carbonate in a Couette−Taylor reactor. Cryst. Growth Des, 4, 491–495. DOI: 10.1021/cg034240c.
Jung T., Kim W.S., Choi Ch.K., 2005. Effect of monovalent salts on morphology of calcium carbonate crystallized in Couette-Taylor reactor. Cryst. Res. Technol., 40, 586–592. DOI: 10.1002/crat.200410387.
Jung W.M., Kang S.H., Kim W.S., Choi C.K., 2000. Particle morphology of calcium carbonate precipitated by gas- liquid reaction in a Couette-Taylor reactor. Chem. Eng. Sci., 55, 733–747. DOI: 10.1016/S0009-2509(99)00395-4.
Kang S.H., Lee S.G., Jung W.M., Kim M.C., Kim W.S., Choi C.K., Feigelson R.S., 2003. Effect of Taylor vortices on calcium carbonate crystallization by gas–liquid reaction. J. Cryst. Growth, 254, 196–205. DOI: 10.1016/S0022- 0248(03)01152-7.
Kangwook L., Jay H.L., Dae R.Y., Mahoney A.W., 2002. Integrated run-to-run and on line model-based con- trol of particle size distribution for a semi-batch precipitation reactor. Comput. Chem. Eng., 26, 1117–1131. DOI: 10.1016/S0098-1354(02)00030-3.
Kakaraniya S., Gupta A., Mehra A., 2007. Reactive precipitation in gas-slurry systems: The CO2 – Ca(OH)2 – CaCO3 System. Ind. Eng. Chem. Res., 46, 3170–3179. DOI: 10.1021/ie060732l.
Kataki, Y., Tsuge H., 1990. Reactive crystallization of calcium carbonate by gas–liquid and liquid–liquid reactions. Can. J. Chem. Eng., 68, 435–442. DOI: 10.1002/cjce.5450680313.
Kędra-Królik K., Gierycz P., 2006. Obtaining calcium carbonate in a multiphase system by the use of new rotating disc precipitation reactor. J. Therm. Anal. Calorim., 83, 579–582. DOI: 10.1007/s10973-005-7416-y.
Kędra-Królik K., Gierycz P., 2009. Precipitation of nanostructured calcite in a controlled multiphase process. J. Cryst. Growth, 311, 3674–3681. DOI: 10.1016/j.jcrysgro.2009.05.017.
Kędra-Królik K., Gierycz P., 2010. Simulation of nucleation and growing of CaCO3 nanoparticles obtained in the rotating disk reactor. J. Cryst. Growth, 312, 1945–1952. DOI: 10.1016/j.jcrysgro.2010.02.036.
Kim W.S., 2014. Application of Taylor vortex to crystallization. J. Chem. Eng. Jpn, 47, 115–123. DOI: 10.1252/jcej.13we143.
Kitano Y., Park K., Hood D.W., 1962. Pure aragonite synthesis. J. Geophys. Res., 67, 4873–4874. DOI: 10.1029/JZ067i012p04873.
Konopacka-Łyskawa D., Cisiak Z., Kawalec-Pietrenko B., 2009. Effect of liquid circulation in the draft-tube reactor on precipitation of calcium carbonate via carbonation. Powder Technol., 190, 319–323. DOI: 10.1016/j.powtec.2008.08.014.
Kramer H.J.M., Dijkstra J.W., Verheijen P.J.T., Van Rosmalen G.M., 2000. Modeling of industrial crystallizers for control and design purposes. Powder Technol., 108, 185–191. DOI: 10.1016/S0032-5910(99)00219-3.
Kulikov V., Briesen H., Marquardt W. 2005. Scale integration for the coupled simulation of crystallization and fluid dynamics. Chem. Eng. Res. Des., 83, 706–717. DOI: 10.1205/cherd.04363.
Kumar S., Ramkrishna D., 1996. On the solution of population balance equations by discretization – II. A moving pivot technique. Chem. Eng. Sci., 51, 1333–1342. DOI: 10.1016/0009-2509(95)00355-X.
Lim S.T. 1980. Hydrodynamics and mass transfer processes associated with the absorption of oxygen in liquid films flowing across a rotating disc. PhD Thesis. University of Newcastle-upon-Tyne, UK.
Majerczak K., Gierycz P., 2016. Analysis and simulation of monodispersed, nanostructured calcite obtained in a controlled multiphase process. Nanomater. Nanotechnol., 6, DOI: 10.1177/1847980416675127.
Malkaj P., Chrissanthopoulos A., Dalas E., 2004. Understanding nucleation of calcium carbonate on gallium oxide using computer simulation. J. Cryst. Growth, 264, 430–437. DOI: 10.1016/j.jcrysgro.2004.01.005.
Marchisio D.L., Vigil R.D., Fox R.O., 2003. Implementation of quadrature method of moments in CFD codes for aggregation-breakage problems. Chem. Eng. Sci., 58, 3337–3351. DOI: 10.1016/S0009-2509(03)00211-2.
Montes-Hernandez G., Renard F., Geoffroy N., Charlet L., Pironon J., 2007. Calcite precipitation from CO2–H2O– Ca(OH)2 slurry under high pressure of CO2. J. Cryst. Growth, 308, 228–236. DOI: 10.1016/j.jcrysgro.2007.08.005.
Moore S.R., 1986. Mass transfer into thin liquid films with and without chemical reaction. PhD Thesis. University of Newcastle-upon-Tyne, UK.
Mullin J.W., 2001. Crystallization. Butterworth-Heinemann, Oxford, UK.
Myerson A.S, 1999. Molecular modelling applications in crystallization. Cambridge University Press, Cambridge, UK.
Nancollas G.H., Reddy M.M., 1971. The crystallization of calcium carbonate. II. Calcite growth mechanism. J. Colloid Interface Sci., 37, 824–830. DOI: 10.1016/0021-9797(71)90363-8.
Nicmanis N., Hounslow M.J., 1998. Finite-element methods for steady-state population balance equations. AIChE J., 44, 2258–2272. DOI: 10.1002/aic.690441015.
Popescu M.-A., Isopescu R., Matei C., Fagarasan G., Plesu V., 2014. Thermal decomposition of calcium carbonate polymorphs precipitated in the presence of ammonia and alkylamines. Adv. Powder Technol., 25, 500-507. DOI: 10.1016/j.apt.2013.08.003.
Prasher C.L., 1987. Crushing and grinding process handbook. Wiley, New York, US.
Quigley D., Roger P.M., 2008. Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization. J. Chem. Phys., 128, 2211011–2211014. DOI: 10.1063/1.2940322.
Ramkrishna D., 2000. Population balances. Theory and applications to particulate systems in engineering. Academic Press, San Diego, US.
Randolph A.D., Larson, M.A., 1988. Theory of particulate processes, Academic Press, New York, US.
Reddy M.M., Nancollas G.H., 1976. The crystallization of calcium carbonate: IV. The effect of magnesium, strontium and sulfate ions. J. Cryst. Growth, 35, 33–38. DOI: 10.1016/0022-0248(76)90240-2.
Rielly C.D., Marquis A.J., 2001. A particle’s eye view of crystallizer fluid mechanics. Chem. Eng. Sci., 56, 2475– 2493. DOI: 10.1016/S0009-2509(00)00457-7.
Rigopoulos S., Jones A.G., 2001. Dynamic modelling of a bubble column for particle formation via a gas-liquid reaction. Chem. Eng. Sci., 56, 6177–6183. DOI: 10.1016/S0009-2509(01)00259-7.
Rigopoulos S., Jones A.G., 2003a. Modeling of semibatch agglomerative gas–liquid precipitation of CaCO3 in a bubble column reactor. Ind. Eng. Chem. Res., 42, 6567–6575. DOI: 10.1021/ie020851a.
Rigopoulos S., Jones A.G., 2003b. Finite-element scheme for solution of the dynamic population balance. AIChE J., 49, 1127–1139. DOI: 10.1002/aic.690490507.
Sisoev G.M., Matar O.K., Lawrence C.J., 2003. Modelling of film flow over a spinning disk. J. Chem. Technol. Biotechnol., 78, 151–155. DOI: 10.1002/jctb.717.
Sisoev G.M., Matar O.K., Lawrence C.J., 2006. The flow of thin liquid films over spinning discs . Can. J. Chem. Eng., 84, 625-642. DOI: 10.1002/cjce.5450840601.
Schlomach J., Quarch K., Kind M., 2006. Investigation of precipitation of calcium carbonate at high supersaturations. Chem. Eng. Technol., 29, 215-220. DOI: 10.1002/ceat.200500390.
Schwarz M.P., Turner W.J., 1988. Applicability of the standard k-ε turbulence model to gas-stirred baths. Appl. Math. Modell., 12, 273–279. DOI: 10.1016/0307-904X(88)90034-0.
Sha, Z., Palosaari, S., 2000. Mixing and crystallization in suspensions. Chem. Eng. Sci., 55, 1797–1806. DOI: 10.1016/S0009-2509(99)00458-3.
Sohnel O., Mullin J.W., 1982. Precipitation of calcium carbonate. J. Cryst. Growth, 60, 239–250. DOI: 10.1016/0022- 0248(82)90095-1.
Spanos N., Koutsoukos P.G., 1998. Kinetics of precipitation of calcium carbonate in alkaline pH at constant supersaturation. spontaneous and seeded growth. J. Phys. Chem. B, 102, 6679–6684. DOI: 10.1021/jp981171h.
Spiegelman M., 2004. Myths and methods in modeling. LDEO, Columbia University, New York, US.
Tai C.Y., Chen P.-C., Shih S-M., 1993. Size-dependent growth and contact nucleation of calcite crystals. AIChE J., 39, 1472–1482. DOI: 10.1002/aic.690390907.
Tai C.Y., Chen P.-C., 1995. Nucleation, agglomeration and crystal morphology of calcium carbonate. AIChE J., 41, 68–77. DOI: 10.1002/aic.690410108.
Tamura K., Tsuge H., 2006. Characteristic of multistage column crystallizer for gas-liquid reactive crystallization of calcium carbonate. Chem. Eng. Sci., 61, 5818–5826. DOI: 10.1016/j.ces.2006.05.002.
Tobias J., Klein M.L., 1996. Molecular dynamics simulations of a calcium carbonate/calcium sulfonate reverse micelle. J. Phys. Chem. B, 100, 6637–6648. DOI: 10.1021/jp951260j.
Trippa G., Hetherington P., Jachuck R.J.J., 2002. Process intensification: Precipitation of calcium carbonate from the carbonation reaction of lime water using a spinning disc reactor. 15th International symposium on industrial 2002; Sorrento, Italy, 1053–1058.
Tsutsumi A., Nieh J.-Y., Fan L.-S., 1991. Role of the bubble wake in fine particle production of calcium carbonate in bubble column system. Ind. Eng. Chem. Res., 30, 2328–2333. DOI: 10.1021/ie00058a012.
Ukrainczyk M., Kontrec J., Babić-Ivancić V., Brecević L., Kralj D. 2007. Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technol., 171, 192–199. DOI: 10.1016/j.powtec.2006.10.046.
Vacassy R., Lemaître J., Hofmann H., Gerlings J.H., 2000. Calcium carbonate precipitation using new segmented flow tubular reactor. AIChE J., 46, 1241–1252. DOI: 10.1002/aic.690460616.
Varma A., Morbidelli M., 1997. Mathematical methods in chemical engineering. Oxford University Press, New York, US.
Villermaux J., Falk L., 1994. A generalized mixing model for initial contacting of reactive fluids. Chem. Eng. Sci., 49, 5127–5140. DOI: 10.1016/0009-2509(94)00303-3.
Wachi S., Jones A.G., 1991. Mass transfer with chemical reaction and precipitation. Chem. Eng. Sci., 46, 1027–1033. DOI: 10.1016/0009-2509(91)85095-F.
Wan B., Ring T.A., 2006. Verification of SMOM and QMOM population balance modeling in CFD code us- ing analytical solutions for batch particulate processes. China Particuology, 4, 243–249. DOI: 10.1016/S1672- 2515(07)60268-1.
Wang T., Antonietti M., Colfen H., 2006. Calcite mesocrystals: “Morphing” crystals by a polyelectrolyte. Chem. Eur. J., 12, 5722–5730. DOI: 10.1002/chem.200501019.
Wei H.Y., Garside J., 1997. Application of CFD modelling to precipitation systems. Chem. Eng. Res. Des., 75, 219–227. DOI: 10.1205/026387697523471.
Wen Y., Xiang L., Jin Y., 2003. Synthesis of plate-like calcium carbonate via carbonation route. Mater. Lett., 57, 2565–2571. DOI: 10.1016/S0167-577X(02)01312-5.
Wojcik J., Jones A.G., 1998. Dynamics and stability of continuous MSMPR agglomerative precipitation: Numer- ical analysis of the dual particle coordinate model. Comput. Chem. Eng., 22, 535–545. DOI: 10.1016/S0098-1354(97)00239-1.
Wray J.L., Daniels F., 1957. Precipitation of calcite and aragonite. J. Am. Chem. Soc., 79, 2031–2034. DOI: 10.1021/ ja01566a001.
Wszelaka-Rylik M., Piotrowska K., Gierycz P., 2015. Simulation, aggregation and thermal analysis of nanos- tructured calcite obtained in a controlled multiphase process. J. Therm. Anal. Calorim., 119, 1323–1338. DOI: 10.1007/s10973-014-4217-1.
Wuklow M., Gerstlauer A., Nieken U., 2001. Modeling and simulation 1 of crystallization processes using parsival. Chem. Eng. Sci., 56, 2575–2588. DOI: 10.1016/S0009-2509(00)00432-2.
Go to article

Authors and Affiliations

Paweł Gierycz
1
Artur Poświata
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thermoelectric generators using the Seebeck effect to generate electricity are increasingly used in various areas of human activity, especially in cases where a cheap high-temperature heat source is available. Despite many advantages, TEG generators have one major disadvantage: very low efficiency of heat conversion into electrical power which strongly depends on the applied load resistance. There is a maximum of generated power between the short and the open circuit in which it is zero. That is why optimization of TEG modules is particularly important. In this paper a method of maximization of generated power in a single TEG module is presented for two cases. The first case concerns a problem with fixed heat flux flow into the hot side of the module whereas the second one concerns a problem with fixed heat transfer parameters in hot heat exchanger i.e. supply gas temperature and heat transfer coefficient. A number of optimization results performed for various values of these parameters are presented and discussed.
Go to article

Authors and Affiliations

Artur Poświata
1
Paweł Gierycz
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland

This page uses 'cookies'. Learn more