Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to analyze the chemiluminescence (CL) of peripheral blood in clinically healthy horses of different sexes and ages. The tests were carried out on 119 half- -breed horses, representing various forms of use (66 recreational horses and 53 sport horses). The test material was peripheral blood, which was collected under resting conditions, i.e. before physical activity related to the use of these animals. In the blood samples, spontaneous and stimulated CL with zymosan and phorbol myristate acetate were determined. It has been found that regular training effort increases the blood’s pro-oxidative potential, which was demonstrated by significantly higher (p<0.05) CL values in sport horses compared to recreational animals. Analysis of the results did not show any statistically significant correlation between sex or age of the horses with chemiluminescence values in peripheral blood. The result of the research suggests the need to optimize the results of blood CL measurements, taking into account the number of neutrophils and the concentration of hemoglobin in the blood of tested animals. Analysis of non-optimized blood CL results may lead to premature conclusions.
Go to article

Bibliography


Albright JM, Dunn RC, Shults JA, Boe DM, Afshar M, Kovacs EJ (2016) Advanced Age Alters Monocyte and Macrophage Responses. Antioxid Redox Signal 25: 805-815.

Bartoskova A, Ondrackova P, Leva L, Vitasek R, Novotny R, Janosovska M, Faldyna M (2014) The effects of in vitro exposure to proges-terone and estradiol-17β on the activity of canine neutrophils. Vet Med 59: 202-209.

Bedouhène S, Moulti-Mati F, Hurtado-Nedelec M, Dang PM, El-Benna J (2017) Luminol-amplified chemiluminescence detects mainly su-peroxide anion produced by human neutrophils. Am J Blood Res 7: 41-48.

Bereshchenko O, Bruscoli S, Riccardi C (2018) Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 9: 1332.

Burlikowska K, Bogusławska-Tryk M, Szymeczko R, Piotrowska A (2015) Haematological and biochemical blood parameters in horses used for sport and recreation. J Cent Eur Agric 16: 370-382.

Caldefie-Chézet F, Walrand S, Moinard C, Tridon A, Chassagne J, Vasson MP (2002) Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome C reduction. Clin Chim Acta 319: 9–17.

Cywińska A, Wyszyńska Z, Górecka R, Szarska E, Witkowski L, Dziekan P, Winnicka A, Schollenberger A (2010) The effect of the 162 km endurance rideon equine peripheral blood neutrophil and lymphocyte functions. Pol J Vet Sci 13: 279-285.

Cywińska A, Turło A, Witkowski L, Szarska E, Winnicka A (2014) Changes in blood cytokine concentrations in horses after long-distance endurance rides. Med Weter 70: 568-571.

Doucet DR, Bonitz RP, Feinman R, Colorado I, Ramanathan M, Feketeova E, Condon M, Machiedo GW, Hauser CJ, Xu DZ, Deitch EA (2010) Estrogenic hormone modulation abrogates changes in red blood cell deformability and neutrophil activation in trauma hemorrhagic shock. J Trauma 68: 35-41.

Escribano BM, Castejón FM, Vivo R, Santisteban R, Agűera EI, Rubio MD (2005) Effects of training on phagocytic and oxidative metabo-lism of peripheral neutrophils in horses exercised in the aerobic-anaerobic transition area. Vet Res Commun 29: 149-158.

Forslid J, Hed J (1982) In vitro effect of hydrocortisone on the attachment and ingestion phases of immunoglobulin G- and complement com-ponent 3b-mediated phagocytosis by human neutrophils. Infect Immun 38: 811-816.

Frape D (2010) Equine nutrition and feeding. 4th ed., Oxford, UK John Wiley & Sons Ltd, pp 90-179.

Hughes DL, Richards RS, Lexis LA (2018) Using chemiluminescence to determine whole blood antioxidant capacity in rheumatoid arthritis and Parkinson’s disease patients. Luminescence 33: 764-770.

Hyyppä S (2005) Endocrinal responses in exercising horses. Livestock Prod Sci 92: 113-121.

Iranifam M (2014) Analytical applications of chemiluminescence methods for cancer detection and therapy. TrAC Trends in Analytical Chem-istry 59: 156-183.

Jimenez AM, Navas MJ (2002) Chemiluminescence Methods (Present and Future). Grasas y Aceites 53: 64-75.

Klink M, Bednarska K, Blus E, Kiełbik M, Sulowska Z (2012) Seasonal changes in activities of human neutrophils in vitro. Inflamm Res 61: 11-16.

Koenig JB, Hart J, Harris DM, Cruz AM, Bienzle D (2009) Evaluation of endotoxin activity in blood measured via neutrophil chemilumines-cence in healthy horses and horses with colic. Am J Vet Res 70: 1183-1186.

Korhonen PA, Lilius EM, Hyyppä S, Räsänen LA, Pösö AR (2000) Production of reactive oxygen species in neutrophils after repeated bouts of exercise in Standardbred trotters. J Vet Med A Physiol Pathol Clin Med 47: 565-573.

Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS (2020) Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth with Exercise. Front Endocrinol (Lausanne) 11: 33.

Krumrych W, Wiśniewski E (2006) Influence of selected stimulators on chemiluminescence of peripheral blood neutrophils in horses. Med Weter 62: 204-206.

Krumrych W, Danek J (2012) Chemiluminescence of Peripheral Blood Neutrophils in Mares with Endometritis. Bull Vet Inst Pulawy 56: 51-56.

Krumrych W, Skórzewski R, Malinowski E (2013) The effect of storage on whole blood chemiluminescence measurement of equine neutro-phils. Luminescence 28: 327-331.

Krumrych W, Gołda R, Gołyński M, Markiewicz H, Buzała M (2018) Effect of physical exercise on cortisol concentration and neutrophil oxygen metabolism in peripheral blood of horses. Ann Anim Sci 18: 53-68.

Lewkowicz P, Lauk-Puchala B, Banasik M, Gorańska N, Tchórzewski H (1999) A standarisation attempt of a measurment method of the whole blood chemiluminescency as a means to estimate human neutrophiles functions. Diagn Lab 35: 497-510. (In Polish with English ab-stract).

Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Role of PLC-beta2 and – beta3 and PI3Kgamma in chemoattractant – mediated signal transduction. Science 287: 1046-1049.

Liburt NR, Adams AA, Betancourt A, Horohov DW, McKeever KH (2010) Exercise-induced increases in inflammatory cytokines in muscle and blood of horses. Equine Vet J Suppl 38: 280-288.

Marin DP, Bolin AP, de Cássia Santos Macedo R, Curi R, Otton R (2010) Testosterone suppresses oxidative stress in human neutrophils. Cell Biochem Funct 28: 394-402.

Martin EM, Till RL, Sheats MK, Jones SL (2017) Misoprostol Inhibits Equine Neutrophil Adhesion, Migration, and Respiratory Burst in an In Vitro Model of Inflammation. Front Vet Sci 4: 159.

McTaggart C, Yovich JV, Penhale J, Raidal SL (2001) A comparison of foal and adult horse neutrophil function using flow cytometric tech-niques. Res Vet Sci 71: 73-79.

Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25: 187-192.

Nieman DC, Wentz LM (2019) The compelling link between physical activity and the body’s defense system. J Sport Health Sci 8: 201-217.

Okunnu BM, Berg RE (2019) Neutrophils Are More Effective than Monocytes at Phagosomal Containment and Killing of Listeria mono-cytogenes. Immunohorizons 3: 573-584.

Ortega E (2003) Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exerc Immunol Rev 9: 70-93.

Papp Z, Smits JE (2007) Validation and novel applications of the whole-blood chemiluminescence assay of innate immune function in wild vertebrates and domestic chickens. J Wildl Dis 43: 623-634.

Primary immunodeficiency diseases. Report of WHO Scientific Group (1997) Clin Exp Immunol 109 Suppl 1: 1-28.

Raidal SL, Love DN, Bailey GD, Rose RJ (2000) Effect of single bouts of moderate and high intensity exercise and training on equine pe-ripheral blood neutrophil function. Res Vet Sci 68: 141-146.

Robson PJ, Alston TD, Myburgh KH (2003) Prolonged suppression of the innate immune system in the horse following an 80 km endurance race. Equine Vet J 35: 133-137.

Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22: 507-513.

Siddiqi M, Garcia ZC, Stein DS, Denny TN, Spolarics Z (2001) Relationship between oxidative burst activity and CD11b expression in neu-trophils and monocytes from healthy individuals: effects of race and gender. Cytometry 46: 243-246.

Simpson RJ, Kunz H, Agha N, Graff R (2015) Exercise and the Regulation of Immune Functions. Prog Mol Biol Transl Sci 135: 355-380.

Szuster-Ciesielska A, Kandefer-Szerszeń M (2002) The influence of sex and age on serum catalase, peroxidase, superoxide dismutase activity and production of O-2 and H2O2 by human blood neutrophils. Ann UMCS sect C Lublin – Polonia 57: 1-12.

Terra R, Gonçalves da Silva SA, Salerno Pinto V, Dutra PM (2012) Effect of exercise on the immune system: response, adaptation and cell signaling. Rev Bras Med Esporte 18: 208-214.

Walton RH, Lawson CA (2021) Equine Hematology. In: Walton RM, Cowell RL, Valenciano AC (eds) Equine Hematology, Cytology, and Clinical Chemistry. 2nd ed., Hoboken, USA, John Wiley & Sons, Inc, pp 9-26.

Wenisch C, Patruta S, Daxböck F, Krause R, Hörl W (2000) Effect of age on human neutrophil function. J Leukoc Biol 67: 40-45.

Yellon SM, Fagoaga OR, Nehlsen-Cannarella SL (1999) Influence of photoperiod on immune cell functions in the male Siberian hamster. Am J Physiol 276: R97-R102.
Go to article

Authors and Affiliations

W. Krumrych
1
J. Danek
2
H. Markiewicz
3
M. Gołyński
4

  1. Department of Microbiology and Immunobiology, Kazimierz Wielki University, Powstańców Wlkp. Avenue 10, 85-090, Bydgoszcz, Poland
  2. Department of Biomedical Engineering, UTP University of Science and Technology, prof. S. Kaliskiego Avenue 7, 85-796 Bydgoszcz, Poland
  3. Department of Animal Breeding, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, Mazowiecka Street 28, 85-082 Bydgoszcz, Poland
  4. Department of Diagnostics and Clinical Sciences, Veterinary Medicine Institute, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska Street 1, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cutaneous adverse food reaction (CAFR) is a common disease, affecting about 1-2% of dogs and cats. Diagnosis of the CAFR is made through elimination diet coupled with diet challenge, as methods like skin tests, patch tests, basophil degranulation tests and assessment of IgG and IgE serum levels are not sensitive enough. A partially hydrolysed salmon and pea hypoallergenic diet was evaluated in the diagnosis and treatment of CAFR in dogs and cats.
The diet was used in the treatment of 13 dogs and 12 cats for 10 weeks. The Pruritus Visual Analog Scale (PVAS; dogs and cats), Canine Atopic Dermatitis Extent and Severity Index (CADESI-04; dogs) and the Scoring Feline Allergic Dermatitis (SCORFAD; cats) were used for effectiveness evaluation.
In dogs, a significant decrease was reported in both CADESI-04 (from 17.3±7.5 to 10.15±7.4; p=0.028) and PVAS (from 7±1.3 to 4.76±1.8; p=0.003) after four weeks of treatment. Also in cats, both the PVAS (from 6.75±1.8 to 4±2.3; p=0.006) and SCORFAD (from 4.16±1.9 to 2.58±1.2; p=0.029) decreased significantly after four weeks. After eight weeks, a significant improvement was observed in almost all the animals. Evaluated diet was useful in the treatment of the CAFR in dogs and cats.
Go to article

Bibliography

Alexander DD, Schmitt DF, Tran NL, Barraj LM, Cushing CA (2010) Partially hydrolyzed 100% whey protein infant formula and atopic dermatitis risk reduction: a systematic review of the literature Nutr Rev, 68: 232-245.
Anderson JA (1986) The establishment of common language concerning adverse reactions to foods and food additives J Allergy Clin Immunol, 78: 140-144.
Belova S, Wilhelm S, Linek M, Beco L, Fontaine J, Bergvall K, Favrot C (2012) Factors affecting allergen-specific IgE serum levels in cats Can J Vet Res, 76: 45-51.
Bethlehem S, Bexley J, Mueller RS (2012) Patch testing and allergen-specific serum IgE and IgG antibodies in the diagnosis of canine adverse food reactions Vet Immunol Immunopathol, 145: 582-589.
Biourge VC, Fontaine J, Vroom MW (2004) Diagnosis of Adverse Reactions to Food in Dogs: Efficacy of a Soy-Isolate Hydrolyzate-Based Diet J Nutr, 134 (Suppl): 2062S-2064S.
Chesney CJ (2002) Food sensitivity in the dog: a quantitative study J Small Anim Pract, 43: 203-207.
DeBoer DJ, Hillier A (2001) The ACVD task force on canine atopic dermatitis (XV): Fundamental concepts in clinical diagnosis. Vet Immunol Immunopathol, 81: 271-276.
Denis S, Paradis M (1994) L’allergie alimentaire chez le chien et le chat. Le Médecin Vétérinaire Du Québec, 24: 15-20
Favrot C, Linek M, Fontaine J, Beco L, Rostaher A, Fischer N, Couturier N, Jacquenet S, Bihain BE (2017) Western blot analysis of sera from dogs with suspected food allergy Vet Dermatol, 28: 189-e42.
Favrot C, Steffan J, Seewald W, Hobi S, Linek M, Marignac G, Olivry T, Beco L, Nett C, Fontaine J, Roosje P, Bergvall K, Belova S, Koebrich S, Pin D, Kovalik M, Meury S, Wilhelm S (2012) Establishment of diagnostic criteria for feline nonflea-induced hypersensitivity dermatitis. Vet Dermatol 23(1): 45-50. Favrot C, Steffan J, Seewald W, Picco F (2010) A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet Dermatol, 21: 23-31.
Foster AP, Knowles TG, Moore AH, Cousins PDG, Day MJ, Hall EJ (2003) Serum IgE and IgG responses to food antigens in normal and atopic dogs, and dogs with gastrointestinal disease. Veter Immunol Immunopathol, 92: 113-124.
Guilford WG (1996) Gastorintestinal immune system. In: Guilford WG, Center SA, Strombeck DR (eds) Strombeck’s small animal gastroenterology. Philadelphia, W.B. Saunders Co. pp 20-37.
Guilford WG, Jones BR, Markwell PJ, Arthur DG, Collett MG, Harte JG (2001) Food Sensitivity in Cats with Chronic Idiopathic Gastrointestinal Problems. J Vet Intern Med 15(1): 7.
Hill PB, Lau P, Rybnicek J (2007) Development of an owner- -assessed scale to measure the severity of pruritus in dogs. Vet Dermatol 18: 301-308.
Jackson HA, Jackson MW, Coblentz L, Hammerberg B (2003) Evaluation of the clinical and allergen specific serum immunoglobulin E responses to oral challenge with cornstarch, corn, soy and a soy hydrolysate diet in dogs with spontaneous food allergy. Vet Dermatol 14: 181-187.
Jeffers JG, Shanley KJ, Meyer EK (1991) Diagnostic testing of dogs for food hypersensitivity. J Am Vet Med Assoc 198: 245-250.
Martin A, Sierra MP, Gonzalez JL, Arevalo MA (2004) Identification of allergens responsible for canine cutaneous adverse food reactions to lamb, beef and cow’s milk. Vet Dermatol 15: 349-356.
Mueller RS, Olivry T, Prélaud P (2016) Critically appraised topic on adverse food reactions of companion animals (2): common food allergen sources in dogs and cats. BMC Vet Res 12: 9.
Mueller RS, Tsohalis (1998) Evaluation of serum allergen- -specific IgE for the diagnosis of food adverse reactions in the dog. Vet Dermatol 9: 167-171.
Olivry T, Mueller RS (2016) Critically appraised topic on adverse food reactions of companion animals (3): prevalence of cutaneous adverse food reactions in dogs and cats. BMC Vet Res 13: 51.
Olivry T, Mueller RS (2020) Critically appraised topic on adverse food reactions of companion animals (9): time to flare of cutaneous signs after a dietary challenge in dogs and cats with food allergies. BMC Vet Res 16: 158.
Olivry T, Saridomichelakis M, Nuttall T, Bensignor E, Griffin CE, Hill PB (2014) Validation of the Canine Atopic Dermatitis Extent and Severity Index (CADESI)-4, a simplified severity scale for assessing skin lesions of atopic dermatitis in dogs. Vet Dermatol 25: 77-e25.
Ricci R, Hammerberg B, Paps J, Contiero B, Jackson H (2010) A comparison of the clinical manifestations of feeding whole and hydrolysed chicken to dogs with hypersensitivity to the native protein. Vet Dermatol 21: 358-366.
Rosser EJ (2013) Diagnostic Workup of Food Hypersensitivity. In: Noli C, Foster A, Rosenkrantz W (ed), Veterinary Allergy. Wiley Blackwell, Oxford pp. 119-123.
Rosser EJ (1993) Diagnosis of food allergy in dogs. J Am Vet Med Assoc, 203: 259-262.
Roudebush P, Guilford WG, Shanley KJ (2000) Adverse reactions to food. In: Hand MS, Novotny BJ (eds) Small animal clinical nutrition. Mark Morris Institute pp 431-453.
Rybníček J, Lau-Gillard PJ, Harvey R, Hill PB (2009) Further validation of a pruritus severity scale for use in dogs. Vet Dermatol 20: 115-122.
Scott DW, Miller WH, Griffin CE (2001) Muller & Kirk’s Small Animal Dermatology. In: Scott DW, Miller WH, Griffin CE (eds) Muller & Kirk’s Small animal dermatology. Saunders pp 543-666.
Steffan J, Olivry T, Forster SL, Seewald W (2012) Responsiveness and validity of the SCORFAD, an extent and severity scale for feline hypersensitivity dermatitis. Vet Dermatol 23: 410-e77.
Walton GS (1967) Skin responses in the dog and cat to ingested allergens. Observations on one hundred confirmed cases. Vet Rec 81: 709-713. White SD (1986) Food hypersensitivity in 30 dogs. J Am Vet Med Assoc 188: 695-698.
White SD, Sequoia D (1989) Food hypersensitivity in cats: 14 cases (1982-1987). J Am Vet Med Assoc, 194: 692-695. Wills J, Harvey R (1994) Diagnosis and management of food allergy and intolerance in dogs and cats. Austr Vet J 71: 322-326.
Zimmer A, Bexley J, Halliwell RE, Mueller RS (2011) Food allergen-specific serum IgG and IgE before and after elimination diets in allergic dogs. Vet ImmunolImmunopathol 144: 442-447.
Go to article

Authors and Affiliations

M.P. Szczepanik
1
M. Gołyński
2
P. Wilkołek
1
G. Kalisz
3

  1. Department of Clinical Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Gleboka 30, 20-612 Lublin, Poland
  2. Department of Diagnostics and Clinical Sciences, Veterinary Medicine Institute, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Torun, Poland
  3. Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedicine, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Calretinin (CR), a calcium-binding protein from EF-hand family, is localised in non-pyramidal GABA-ergic interneurons of the hippocampus. CR takes part in maintaining calcium binding homeostasis, which suggests its neuroprotective role. Hippocampal neurons contain membrane transient receptor potential vanilloid 1 (TRPV1) which binds to capsaicin (CAP) contained in habanero pepper fruits. Few in vivo studies have revealed the effect of CAP on interneurons containing CR. The aim of the present study was to investigate the CR immunoreac- tivity in interneurons of the hippocampal CA1 field and dentate gyrus (DG) in adult rats after intragastric admin- istration of the habanero pepper fruits. Wistar rats received a peanut oil – control group (C), and oil suspension of habanero pepper fruits at doses of 0.025 g dm/kg b.w. – group I and 0.08 g dm/kg b.w. – group II for 28 days. After euthanasia, the brains were collected and embedded in paraffin blocks using a routine histological tech- nique. Frontal hippocampal sections were immunohistochemically stained for CR by using a peroxidase-antiper- oxidase method. CR immunoreactive (CR-IR) interneurons were morphologically and morphometrically ana- lyzed under a light microscope. The results showed similar shapes and distribution of cells in both areas of the brain in group C and I of animals. However, CR-IR interneurons in the hippocampal CA1 field and in DG were occasionally observed in the group II of rats.

The results of morphometric studies did not reveal statistically significant differences in the surface area and shape index of cells between examined brain regions from groups I and II compared to group C.

Only in group II of rats, an increase in the digital immunostaining intensity of CR-IR interneurons was found in DG. Low number of CR-IR interneurons in the hippocampal CA1 field and in the DG, under the influence of a large dose of habanero pepper fruits containing CAP, may be caused by the activation of TRPV1 receptors and the increase in Ca2+ ions in these cells. This phenomenon may ultimately lead to neuronal death and may disturb neuronal conduction.

Go to article

Authors and Affiliations

J. Jaworska-Adamu
A. Krawczyk
K. Rycerz
M. Gołyński
A. Wawrzyniak
K. Lutnicki
I. Balicki
Download PDF Download RIS Download Bibtex

Abstract

Allergic skin diseases in cats are amongst the most prevalent dermatological conditions in this species. The objectives of this study were to evaluate different types of skin barrier measurements in healthy cats and cats with non-flea non-food hypersensitivity dermatitis (NFNFHD). 24 clinically healthy and 19 NFNFHD cats were included in this clinical trial. In each animal, the transepidermal water loss (TEWL) and skin hydration (SH) were assessed on six clipped body sites by VapoMeter SWL 4605 and Corneometer ®CM 825, respectively. Results of TEWL measurement were , significantly higher in one of the six examined body sites, namely on the lumbar area (p=0.0049). Furthermore, a statistically significant difference was found between the average TEWL values (p=0.019). Statistically notable differences were mea- sured at least in one certain body site for SH: in the groin (p=0.02), where the values in the affect- ed cats were lower than in the healthy individuals. These results may suggest that in NFNFHD cats transepidermal water loss is higher than in healthy cats. Skin hydration is, at least, in certain body sites, lower in atopic feline patients than in healthy individuals.

Go to article

Authors and Affiliations

M.P. Szczepanik
P.M. Wilkołek
Ł.R. Adamek
G. Kalisz
M. Gołyński
W. Sitkowski
I. Taszkun

This page uses 'cookies'. Learn more