Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL) variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential stretched law with an exponent n = 0.5. Here, the equilibrium between the ion drift and diffusion is achieved. The process of leakage current degradation is therefore partially reversible. When the external electric field is lowered, or the samples are shortened, the leakage current for a given voltage decreases with time and the DCL vs. time characteristics are described by the exponential stretched law with an exponent n = 0.5, thus the ion redistribution by diffusion becomes dominant.

Go to article

Authors and Affiliations

Martin Kuparowitz
Lubomír Grmela
Vlasta Sedlakova
Download PDF Download RIS Download Bibtex

Abstract

Noise diagnostics has been performed on the cold field-emission cathode in high-vacuum. The tested cold field-emission cathode, based on tungsten wire with ultra-sharp tip coated by epoxy was designed to meet the requirements of transmission electron microscopy, which uses a small and stable source of electrons. Current fluctuations are reduced by improving the structure and fabrication technology. Noise was measured both in time and frequency domains, which gives information about current fluctuations and also about charge transport. Mutual correlation between the noise spectral density, extractor voltage and beam brightness was analyzed.

Go to article

Authors and Affiliations

Alexandr Knápek
Lubomír Grmela
Josef Šikula
Ondřej Šik
Download PDF Download RIS Download Bibtex

Abstract

Samples of CdTe single crystals which are used as radiation detectors were periodically measured during a long time interval with different values of an applied voltage. The samples were also periodically exposed during long time periods to high temperatures of 390 K and to rapid changes of temperature from 300 K to 390 K. After 1.5 years of measurements we observed ageing of the samples which resulted in deterioration of their transport characteristics. The resistance of the samples increased significantly and current-voltage characteristics were unstable in time. Noise spectroscopy showed that low frequency noise can be used for detection of CdTe sample ageing as its spectral density increases significantly comparing to the 1/f noise of a high quality sample

Go to article

Authors and Affiliations

Lubomír Grmela
Ondřej Šik
Alexey Andreev
Josef Sikula
Download PDF Download RIS Download Bibtex

Abstract

Noise spectroscopy and I-V characteristic non-linearity measurement were applied as diagnostic tools in order to characterize the volume and contact quality of positive temperature coefficient (PTC) chip sensors and to predict possible contact failure. Correctly made and stable contacts are crucial for proper sensing. I-V characteristics and time dependences of resistance were measured for studied sensors and, besides the samples with stable resistance value, spike type resistance fluctuation was observed for some samples. These spikes often disappear after about 24 hours of voltage application. Linear I-V characteristics were measured for the samples with stable resistance. The resistance fluctuation of burst noise type was observed for some samples showing the I-V characteristic dependent on the electric field orientation. We have found that the thermistors with high quality contacts had a linear I-V characteristic, the noise spectral density is of 1/f type and the third harmonic index is lower than 60 dB. The samples with poor quality contacts show non-linear I-V characteristics and excess noise is given by superposition of g-r and 1/fn type noises, and the third harmonic index is higher than 60 dB.

Go to article

Authors and Affiliations

Lubomír Grmela
Zdenek Sita
Vlasta Sedlakova
Jiri Majzner
Petr Sedlak
Josef Sikula

This page uses 'cookies'. Learn more