Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

On the basis of hydrogen peroxide decomposition process occurring in the bioreactor with fixed-bed of commercial catalase the optimal feed temperature was determined. This feed temperature was obtained by maximizing the time-average substrate conversion under constant feed flow rate and temperature constraints. In calculations, convection-diffusion-reaction immobilized enzyme fixed-bed bioreactor described by a coupled mass and energy balances as well as general kinetic equation for rate of enzyme deactivation was taken into consideration. This model is based on kinetic, hydrodynamic and mass-transfer parameters estimated in earlier work. The simulation showed that in the biotransformation with thermal deactivation of catalase optimal feed temperature is only affected by kinetic parameters for enzyme deactivation and decreases with increasing value of activation energy for deactivation. When catalase undergoes parallel deactivation the optimal feed temperature is strongly dependent on hydrogen peroxide feed concentration, feed flow rate and diffusional resistances expressed by biocatalyst effectiveness factor. It has been shown that the more significant diffusional resistances and the higher hydrogen peroxide conversions, the higher the optimal feed temperature is expected.

Go to article

Authors and Affiliations

Ireneusz Grubecki
Download PDF Download RIS Download Bibtex

Abstract

It is known that external diffusional resistances are significant in immobilized enzyme packed-bed reactors, especially at large scales. Thus, the external mass transfer effects were analyzed for hydrogen peroxide decomposition by immobilized Terminox Ultra catalase in a packed-bed bioreactor. For this purpose the apparent reaction rate constants, kP, were determined by conducting experimental works at different superficial velocities, U, and temperatures. To develop an external mass transfer model the correlation between the Colburn factor, JD, and the Reynolds number, Re, of the type JD = K Re(n-1) was assessed and related to the mass transfer coefficient, kmL. The values of K and n were calculated from the dependence (am kp-1 - kR-1) vs. Re-1 making use of the intrinsic reaction rate constants, kR, determined before. Based on statistical analysis it was found that the mass transfer correlation JD = 0.972 Re-0.368 predicts experimental data accurately. The proposed model would be useful for the design and optimization of industrial-scale reactors.

Go to article

Authors and Affiliations

Ireneusz Grubecki
Download PDF Download RIS Download Bibtex

Abstract

Optimal feed temperature was determined for a non-isothermal fixed-bed reactor performing hydrogen peroxide decomposition by immobilized Terminox Ultra catalase. This feed temperature was obtained by maximizing the average substrate conversion under constant feed flow rate and temperature constraints. In calculations, convection-diffusion-reaction immobilized enzyme fixed-bed reactor described by a set of partial differential equations was taken into account. It was based on kinetic, hydrodynamic and mass transfer parameters previously obtained in the process of H2O2 decomposition. The simulation showed the optimal feed temperature to be strongly dependent on hydrogen peroxide concentration, feed flow rate and diffusional resistances expressed by biocatalyst effectiveness factor.
Go to article

Authors and Affiliations

Ireneusz Grubecki
Download PDF Download RIS Download Bibtex

Abstract

The effect of emulsifier volume on emulsion system stability of plant origin being the basis of diet supplements for animals in winter season was analyzed. For this purpose, measurements of the backscattered light intensity as the function of the measuring cell height were conducted with a Turbiscan LAB optical analyzer. System stability was analyzed on the basis of Turbiscan Stability Index values. A Helos laser analyzer and a Nikon Eclipse E400 POL optical microscope were used to investigate drop size distribution and analyze microscopic pictures. It was shown that emulsion with 10% (w/w) of the emulsifier was the most stable one.

Go to article

Authors and Affiliations

Anna Zalewska
Joanna Kowalik
Ireneusz Grubecki
Download PDF Download RIS Download Bibtex

Abstract

Simplified optimization method using the MATLAB function fminbnd was adopted to determine the optimal feed temperature (OFT) for an isothermal packed-bed reactor (PBR) performing hydrogen peroxide decomposition (HPD) by immobilized Terminox Ultra catalase (TUC). The feed temperature was determined to maximize (minimize) the average reactant conversion (reactant concentration) over a fixed period time at the reactor outlet. The optimization was based on material balance and rate equation for enzyme action and decay and considered the effect of mass-transfer limitations on the system behavior. In order to highlight the relevance and applicability of the work reported here, the case of optimality under isothermal operating conditions is considered and the practical example is worked out. Optimisation method under consideration shows that inappropriate selection of the feed temperature may lead to a decrease in the bioreactor productivity.
Go to article

Authors and Affiliations

Ireneusz Grubecki
1
ORCID: ORCID
Wirginia Tomczak
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
  2. Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The demand of energy and the search for alternative energy sources are the reason why scientists are interested in starch hydrolysis. The aim of the work was to experimental study of the hydrolysis of starch by α–amylase from porcine pancreas with α–amylase deactivation. Based on the experiments data, the parameters of starch hydrolysis by α– amylase with deactivation of enzyme was estimated. A mathematical model of temperature impact on the activity of α–amylase from porcine pancreas was used. It has been estimated that the activation energy Ea and the deactivation energy Ed were equal to 66 ± 4 kJ/mol and 161 ± 12 kJ/mol, respectively. Additionally, specific constant of starch hydrolysis k 0 and specific constant of α–amylase deactivation k d0 were calculated. The optimum temperature Topt equal to 318 ± 0.5 K was obtained from mathematical model. The obtained values of Ea, Ed, k 0 and k d0 parameters were used to the model starch hydrolysis by α–amylase from porcine pancreas at 310 K and 333 K.
Go to article

Authors and Affiliations

Justyna Miłek
1
ORCID: ORCID
Ireneusz Grubecki
2
ORCID: ORCID
Wirginia Tomczak
1
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Department of Chemical and Biochemical Engineering, Faculty of Chemical Technology and Engineering, Semianryjna 3, 85-326 Bydgoszcz, Poland
  2. Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland

This page uses 'cookies'. Learn more