Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of experiments on a detection system used for detecting signals from a miniature, low-energy micro-electro-mechanical system (MEMS) X-ray source. The authors propose to use a detection based on luminescence phenomena occurring in luminophore and scintillators to record the visual signal on a CMOS/CCD detector. The main part of the article is a review of various materials of scintillators and luminophores which would be adequate to convert low-energy X-ray radiation (E < 25 keV – it is a range not typical for conventional X-ray systems) to visible light. Measurements obtained for different energies, exposure times, and different targets have been presented and analysed.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technologyul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview and a classification of X-ray detection methods. The main motivation for its preparation was the need to select a suitable and useful method for detecting signals from a currently developed miniature micro-electro-mechanical system (MEMS) X-ray source. The described methods were divided into passive and active ones, among which can be distinguished: chemical, luminescent, thermo-luminescent, gas ionization, semiconductor, and calorimetric methods. The advantages and drawbacks of each method were underlined, as well as their usefulness for the characterisation of the miniature MEMS X-ray source.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland

This page uses 'cookies'. Learn more