Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a fiber-based model proposed for computing the nonlinear longitudinal shear distribution in composite steel-concrete beams. The presented method incorporates the accurate stress-strain relationship with strain softening for concrete and bi-linear constitutive relation for structural steel, both in agreement with Eurocodes, however any one-dimensional constitutive relation can be used. The numerical solution for a simply supported beams loaded with the uniform load, concentrated force and both was presented. The results indicate that the highest value of the shear flow for a beam under an uniform load is at the ends and in the one third of the span length and for the point load, the maximum shear is in the proximity of the concentrated force.

Go to article

Authors and Affiliations

B. Grzeszykowski
E. Szmigiera
Download PDF Download RIS Download Bibtex

Abstract

New approach using direct crack width calculations of the minimum reinforcement in tensile RC elements is presented. Verification involves checking whether the provided reinforcement ensures that the crack width that may result from the thermal-shrinkage effects does not exceed the limit value. The Eurocode provisions were enriched with addendums derived from the German national annex. Three levels of accuracy of the analysis were defined - the higher the level applied, the more significant reduction in the amount of reinforcement required can be achieved. A methodology of determining the minimum reinforcement for crack width control on the example of a RC retaining wall is presented. In the analysis the influence of residual and restraint stresses caused by hydration heat release and shrinkage was considered.

Go to article

Authors and Affiliations

M. Knauff
B. Grzeszykowski
A. Golubińska

This page uses 'cookies'. Learn more